| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetero.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 2 |  | mdetero.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mdetero.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | mdetero.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | mdetero.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 6 |  | mdetero.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | mdetero.x | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 8 |  | mdetero.y | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐾 ) | 
						
							| 9 |  | mdetero.z | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑍  ∈  𝐾 ) | 
						
							| 10 |  | mdetero.w | ⊢ ( 𝜑  →  𝑊  ∈  𝐾 ) | 
						
							| 11 |  | mdetero.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
						
							| 12 |  | mdetero.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑁 ) | 
						
							| 13 |  | mdetero.ij | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 14 | 7 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 15 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 18 | 10 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑊  ∈  𝐾 ) | 
						
							| 19 | 8 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐾 ) | 
						
							| 20 | 2 4 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐾  ∧  𝑌  ∈  𝐾 )  →  ( 𝑊  ·  𝑌 )  ∈  𝐾 ) | 
						
							| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑊  ·  𝑌 )  ∈  𝐾 ) | 
						
							| 22 | 19 9 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 )  ∈  𝐾 ) | 
						
							| 23 | 1 2 3 5 6 14 21 22 11 | mdetrlin2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  ( 𝑊  ·  𝑌 ) ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  =  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  +  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑊  ·  𝑌 ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) ) ) | 
						
							| 24 | 1 2 4 5 6 19 22 10 11 | mdetrsca2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑊  ·  𝑌 ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  =  ( 𝑊  ·  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 26 | 1 2 25 5 6 8 9 11 12 13 | mdetralt2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) )  =  ( 𝑊  ·  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 28 | 2 4 25 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑊  ∈  𝐾 )  →  ( 𝑊  ·  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 29 | 16 10 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 30 | 24 27 29 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑊  ·  𝑌 ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  +  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑊  ·  𝑌 ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) )  =  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  +  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 32 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 33 | 16 32 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 36 | 1 34 35 2 | mdetf | ⊢ ( 𝑅  ∈  CRing  →  𝐷 : ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ⟶ 𝐾 ) | 
						
							| 37 | 5 36 | syl | ⊢ ( 𝜑  →  𝐷 : ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ⟶ 𝐾 ) | 
						
							| 38 | 14 22 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) )  ∈  𝐾 ) | 
						
							| 39 | 34 2 35 6 5 38 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 40 | 37 39 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  ∈  𝐾 ) | 
						
							| 41 | 2 3 25 | grprid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  ∈  𝐾 )  →  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  +  ( 0g ‘ 𝑅 ) )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) ) | 
						
							| 42 | 33 40 41 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  +  ( 0g ‘ 𝑅 ) )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) ) | 
						
							| 43 | 23 31 42 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  ( 𝑊  ·  𝑌 ) ) ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) )  =  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑌 ,  𝑍 ) ) ) ) ) |