Step |
Hyp |
Ref |
Expression |
1 |
|
mdetfval.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
2 |
|
mdetfval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mdetfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mdetfval.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
5 |
|
mdetfval.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
6 |
|
mdetfval.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
7 |
|
mdetfval.t |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetfval.u |
⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) |
9 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
13 |
|
simpr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
14 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑛 ) = ( SymGrp ‘ 𝑁 ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑛 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
17 |
16 4
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑛 ) ) = 𝑃 ) |
18 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
20 |
19 7
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( .r ‘ 𝑟 ) = · ) |
21 |
13
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) ) |
22 |
21 5
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = 𝑌 ) |
23 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( pmSgn ‘ 𝑛 ) = ( pmSgn ‘ 𝑁 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( pmSgn ‘ 𝑛 ) = ( pmSgn ‘ 𝑁 ) ) |
25 |
24 6
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( pmSgn ‘ 𝑛 ) = 𝑆 ) |
26 |
22 25
|
coeq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) = ( 𝑌 ∘ 𝑆 ) ) |
27 |
26
|
fveq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
30 |
29 8
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( mulGrp ‘ 𝑟 ) = 𝑈 ) |
31 |
14
|
mpteq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) |
32 |
30 31
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) = ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) |
33 |
20 27 32
|
oveq123d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) |
34 |
17 33
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) |
35 |
13 34
|
oveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
36 |
12 35
|
mpteq12dv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
37 |
|
df-mdet |
⊢ maDet = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
38 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
39 |
38
|
mptex |
⊢ ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ∈ V |
40 |
36 37 39
|
ovmpoa |
⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
41 |
37
|
reldmmpo |
⊢ Rel dom maDet |
42 |
41
|
ovprc |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ∅ ) |
43 |
|
mpt0 |
⊢ ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ∅ |
44 |
42 43
|
eqtr4di |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
45 |
|
df-mat |
⊢ Mat = ( 𝑦 ∈ Fin , 𝑧 ∈ V ↦ ( ( 𝑧 freeLMod ( 𝑦 × 𝑦 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑧 maMul 〈 𝑦 , 𝑦 , 𝑦 〉 ) 〉 ) ) |
46 |
45
|
reldmmpo |
⊢ Rel dom Mat |
47 |
46
|
ovprc |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 Mat 𝑅 ) = ∅ ) |
48 |
2 47
|
syl5eq |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐴 = ∅ ) |
49 |
48
|
fveq2d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ 𝐴 ) = ( Base ‘ ∅ ) ) |
50 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
51 |
49 3 50
|
3eqtr4g |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
52 |
51
|
mpteq1d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
53 |
44 52
|
eqtr4d |
⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
54 |
40 53
|
pm2.61i |
⊢ ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
55 |
1 54
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |