Metamath Proof Explorer


Theorem mdetleib1

Description: Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015) (Revised by AV, 26-Dec-2018)

Ref Expression
Hypotheses mdetfval1.d 𝐷 = ( 𝑁 maDet 𝑅 )
mdetfval1.a 𝐴 = ( 𝑁 Mat 𝑅 )
mdetfval1.b 𝐵 = ( Base ‘ 𝐴 )
mdetfval1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
mdetfval1.y 𝑌 = ( ℤRHom ‘ 𝑅 )
mdetfval1.s 𝑆 = ( pmSgn ‘ 𝑁 )
mdetfval1.t · = ( .r𝑅 )
mdetfval1.u 𝑈 = ( mulGrp ‘ 𝑅 )
Assertion mdetleib1 ( 𝑀𝐵 → ( 𝐷𝑀 ) = ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mdetfval1.d 𝐷 = ( 𝑁 maDet 𝑅 )
2 mdetfval1.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 mdetfval1.b 𝐵 = ( Base ‘ 𝐴 )
4 mdetfval1.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
5 mdetfval1.y 𝑌 = ( ℤRHom ‘ 𝑅 )
6 mdetfval1.s 𝑆 = ( pmSgn ‘ 𝑁 )
7 mdetfval1.t · = ( .r𝑅 )
8 mdetfval1.u 𝑈 = ( mulGrp ‘ 𝑅 )
9 oveq ( 𝑚 = 𝑀 → ( ( 𝑝𝑥 ) 𝑚 𝑥 ) = ( ( 𝑝𝑥 ) 𝑀 𝑥 ) )
10 9 mpteq2dv ( 𝑚 = 𝑀 → ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) )
11 10 oveq2d ( 𝑚 = 𝑀 → ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) ) = ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) )
12 11 oveq2d ( 𝑚 = 𝑀 → ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) )
13 12 mpteq2dv ( 𝑚 = 𝑀 → ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) ) )
14 13 oveq2d ( 𝑚 = 𝑀 → ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) )
15 1 2 3 4 5 6 7 8 mdetfval1 𝐷 = ( 𝑚𝐵 ↦ ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) )
16 ovex ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ∈ V
17 14 15 16 fvmpt ( 𝑀𝐵 → ( 𝐷𝑀 ) = ( 𝑅 Σg ( 𝑝𝑃 ↦ ( ( 𝑌 ‘ ( 𝑆𝑝 ) ) · ( 𝑈 Σg ( 𝑥𝑁 ↦ ( ( 𝑝𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) )