Step |
Hyp |
Ref |
Expression |
1 |
|
mdetr0.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
2 |
|
mdetr0.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
mdetr0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mdetr0.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
mdetr0.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
6 |
|
mdetr0.x |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
7 |
|
mdetr0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
11 |
2 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 0 ∈ 𝐾 ) |
14 |
1 2 8 4 5 13 6 12 7
|
mdetrsca2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) ) |
15 |
2 8 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝐾 ) → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
16 |
10 12 15
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
17 |
16
|
ifeq1d |
⊢ ( 𝜑 → if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) = if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) |
18 |
17
|
mpoeq3dv |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r ‘ 𝑅 ) 0 ) , 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) |
20 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
22 |
1 20 21 2
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 ) |
24 |
13 6
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ∈ 𝐾 ) |
25 |
20 2 21 5 4 24
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
26 |
23 25
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 ) |
27 |
2 8 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 ) |
28 |
10 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 ) |
29 |
14 19 28
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) = 0 ) |