Metamath Proof Explorer


Theorem mdetr0

Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetr0.d 𝐷 = ( 𝑁 maDet 𝑅 )
mdetr0.k 𝐾 = ( Base ‘ 𝑅 )
mdetr0.z 0 = ( 0g𝑅 )
mdetr0.r ( 𝜑𝑅 ∈ CRing )
mdetr0.n ( 𝜑𝑁 ∈ Fin )
mdetr0.x ( ( 𝜑𝑖𝑁𝑗𝑁 ) → 𝑋𝐾 )
mdetr0.i ( 𝜑𝐼𝑁 )
Assertion mdetr0 ( 𝜑 → ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) = 0 )

Proof

Step Hyp Ref Expression
1 mdetr0.d 𝐷 = ( 𝑁 maDet 𝑅 )
2 mdetr0.k 𝐾 = ( Base ‘ 𝑅 )
3 mdetr0.z 0 = ( 0g𝑅 )
4 mdetr0.r ( 𝜑𝑅 ∈ CRing )
5 mdetr0.n ( 𝜑𝑁 ∈ Fin )
6 mdetr0.x ( ( 𝜑𝑖𝑁𝑗𝑁 ) → 𝑋𝐾 )
7 mdetr0.i ( 𝜑𝐼𝑁 )
8 eqid ( .r𝑅 ) = ( .r𝑅 )
9 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
10 4 9 syl ( 𝜑𝑅 ∈ Ring )
11 2 3 ring0cl ( 𝑅 ∈ Ring → 0𝐾 )
12 10 11 syl ( 𝜑0𝐾 )
13 12 3ad2ant1 ( ( 𝜑𝑖𝑁𝑗𝑁 ) → 0𝐾 )
14 1 2 8 4 5 13 6 12 7 mdetrsca2 ( 𝜑 → ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r𝑅 ) 0 ) , 𝑋 ) ) ) = ( 0 ( .r𝑅 ) ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) )
15 2 8 3 ringlz ( ( 𝑅 ∈ Ring ∧ 0𝐾 ) → ( 0 ( .r𝑅 ) 0 ) = 0 )
16 10 12 15 syl2anc ( 𝜑 → ( 0 ( .r𝑅 ) 0 ) = 0 )
17 16 ifeq1d ( 𝜑 → if ( 𝑖 = 𝐼 , ( 0 ( .r𝑅 ) 0 ) , 𝑋 ) = if ( 𝑖 = 𝐼 , 0 , 𝑋 ) )
18 17 mpoeq3dv ( 𝜑 → ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r𝑅 ) 0 ) , 𝑋 ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) )
19 18 fveq2d ( 𝜑 → ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , ( 0 ( .r𝑅 ) 0 ) , 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) )
20 eqid ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 )
21 eqid ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
22 1 20 21 2 mdetf ( 𝑅 ∈ CRing → 𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 )
23 4 22 syl ( 𝜑𝐷 : ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ⟶ 𝐾 )
24 13 6 ifcld ( ( 𝜑𝑖𝑁𝑗𝑁 ) → if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ∈ 𝐾 )
25 20 2 21 5 4 24 matbas2d ( 𝜑 → ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) )
26 23 25 ffvelrnd ( 𝜑 → ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 )
27 2 8 3 ringlz ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ∈ 𝐾 ) → ( 0 ( .r𝑅 ) ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 )
28 10 26 27 syl2anc ( 𝜑 → ( 0 ( .r𝑅 ) ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) ) = 0 )
29 14 19 28 3eqtr3d ( 𝜑 → ( 𝐷 ‘ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐼 , 0 , 𝑋 ) ) ) = 0 )