| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetralt2.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 2 |  | mdetralt2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mdetralt2.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mdetralt2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 5 |  | mdetralt2.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | mdetralt2.x | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 7 |  | mdetralt2.y | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐾 ) | 
						
							| 8 |  | mdetralt2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
						
							| 9 |  | mdetralt2.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑁 ) | 
						
							| 10 |  | mdetralt2.ij | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 13 | 6 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 14 | 13 7 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 )  ∈  𝐾 ) | 
						
							| 15 | 13 14 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  ∈  𝐾 ) | 
						
							| 16 | 11 2 12 5 4 15 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 17 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) ) | 
						
							| 18 |  | iftrue | ⊢ ( 𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  𝑋 ) | 
						
							| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐼  ∧  𝑗  =  𝑤 ) )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  𝑋 ) | 
						
							| 20 |  | csbeq1a | ⊢ ( 𝑗  =  𝑤  →  𝑋  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 21 | 20 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐼  ∧  𝑗  =  𝑤 ) )  →  𝑋  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐼  ∧  𝑗  =  𝑤 ) )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 23 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  𝑖  =  𝐼 )  →  𝑁  =  𝑁 ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  𝐼  ∈  𝑁 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  𝑤  ∈  𝑁 ) | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑤  ∈  𝑁 ) | 
						
							| 27 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑤  /  𝑗 ⦌ 𝑋 | 
						
							| 28 | 27 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑤  /  𝑗 ⦌ 𝑋  ∈  𝐾 | 
						
							| 29 | 26 28 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝑋  ∈  𝐾 ) | 
						
							| 30 |  | eleq1w | ⊢ ( 𝑗  =  𝑤  →  ( 𝑗  ∈  𝑁  ↔  𝑤  ∈  𝑁 ) ) | 
						
							| 31 | 30 | anbi2d | ⊢ ( 𝑗  =  𝑤  →  ( ( 𝜑  ∧  𝑗  ∈  𝑁 )  ↔  ( 𝜑  ∧  𝑤  ∈  𝑁 ) ) ) | 
						
							| 32 | 20 | eleq1d | ⊢ ( 𝑗  =  𝑤  →  ( 𝑋  ∈  𝐾  ↔  ⦋ 𝑤  /  𝑗 ⦌ 𝑋  ∈  𝐾 ) ) | 
						
							| 33 | 31 32 | imbi12d | ⊢ ( 𝑗  =  𝑤  →  ( ( ( 𝜑  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 )  ↔  ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝑋  ∈  𝐾 ) ) ) | 
						
							| 34 | 29 33 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝑋  ∈  𝐾 ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑤  ∈  𝑁 ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑗 𝐼 | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑖 𝑤 | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑖 ⦋ 𝑤  /  𝑗 ⦌ 𝑋 | 
						
							| 39 | 17 22 23 24 25 34 35 26 36 37 38 27 | ovmpodxf | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ( 𝐼 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 )  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 40 |  | iftrue | ⊢ ( 𝑖  =  𝐽  →  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 )  =  𝑋 ) | 
						
							| 41 | 40 | ifeq2d | ⊢ ( 𝑖  =  𝐽  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑋 ) ) | 
						
							| 42 |  | ifid | ⊢ if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑋 )  =  𝑋 | 
						
							| 43 | 41 42 | eqtrdi | ⊢ ( 𝑖  =  𝐽  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  𝑋 ) | 
						
							| 44 | 43 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐽  ∧  𝑗  =  𝑤 ) )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  𝑋 ) | 
						
							| 45 | 20 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐽  ∧  𝑗  =  𝑤 ) )  →  𝑋  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 46 | 44 45 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  ( 𝑖  =  𝐽  ∧  𝑗  =  𝑤 ) )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) )  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 47 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  ∧  𝑖  =  𝐽 )  →  𝑁  =  𝑁 ) | 
						
							| 48 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  𝐽  ∈  𝑁 ) | 
						
							| 49 |  | nfcv | ⊢ Ⅎ 𝑗 𝐽 | 
						
							| 50 | 17 46 47 48 25 34 35 26 49 37 38 27 | ovmpodxf | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ( 𝐽 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 )  =  ⦋ 𝑤  /  𝑗 ⦌ 𝑋 ) | 
						
							| 51 | 39 50 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑁 )  →  ( 𝐼 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 )  =  ( 𝐽 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 ) ) | 
						
							| 52 | 51 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑁 ( 𝐼 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 )  =  ( 𝐽 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) 𝑤 ) ) | 
						
							| 53 | 1 11 12 3 4 16 8 9 10 52 | mdetralt | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  if ( 𝑖  =  𝐽 ,  𝑋 ,  𝑌 ) ) ) )  =   0  ) |