Step |
Hyp |
Ref |
Expression |
1 |
|
mdetralt2.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
2 |
|
mdetralt2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
mdetralt2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
mdetralt2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
5 |
|
mdetralt2.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
6 |
|
mdetralt2.x |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
7 |
|
mdetralt2.y |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
8 |
|
mdetralt2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
9 |
|
mdetralt2.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
10 |
|
mdetralt2.ij |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
11 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
13 |
6
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
14 |
13 7
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ∈ 𝐾 ) |
15 |
13 14
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ∈ 𝐾 ) |
16 |
11 2 12 5 4 15
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ) |
18 |
|
iftrue |
⊢ ( 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
19 |
18
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
20 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑤 → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
21 |
20
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
22 |
19 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
23 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑖 = 𝐼 ) → 𝑁 = 𝑁 ) |
24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝐼 ∈ 𝑁 ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝑤 ∈ 𝑁 ) |
26 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) |
27 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 |
28 |
27
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 |
29 |
26 28
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) |
30 |
|
eleq1w |
⊢ ( 𝑗 = 𝑤 → ( 𝑗 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁 ) ) |
31 |
30
|
anbi2d |
⊢ ( 𝑗 = 𝑤 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) ↔ ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ) ) |
32 |
20
|
eleq1d |
⊢ ( 𝑗 = 𝑤 → ( 𝑋 ∈ 𝐾 ↔ ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) ) |
33 |
31 32
|
imbi12d |
⊢ ( 𝑗 = 𝑤 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) ) ) |
34 |
29 33 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ∈ 𝐾 ) |
35 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐼 |
37 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑤 |
38 |
|
nfcv |
⊢ Ⅎ 𝑖 ⦋ 𝑤 / 𝑗 ⦌ 𝑋 |
39 |
17 22 23 24 25 34 35 26 36 37 38 27
|
ovmpodxf |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
40 |
|
iftrue |
⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) = 𝑋 ) |
41 |
40
|
ifeq2d |
⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑋 ) ) |
42 |
|
ifid |
⊢ if ( 𝑖 = 𝐼 , 𝑋 , 𝑋 ) = 𝑋 |
43 |
41 42
|
eqtrdi |
⊢ ( 𝑖 = 𝐽 → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
44 |
43
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = 𝑋 ) |
45 |
20
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → 𝑋 = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
46 |
44 45
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑖 = 𝐽 ∧ 𝑗 = 𝑤 ) ) → if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
47 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑖 = 𝐽 ) → 𝑁 = 𝑁 ) |
48 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → 𝐽 ∈ 𝑁 ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐽 |
50 |
17 46 47 48 25 34 35 26 49 37 38 27
|
ovmpodxf |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑗 ⦌ 𝑋 ) |
51 |
39 50
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) ) |
52 |
51
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑁 ( 𝐼 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) = ( 𝐽 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) 𝑤 ) ) |
53 |
1 11 12 3 4 16 8 9 10 52
|
mdetralt |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , if ( 𝑖 = 𝐽 , 𝑋 , 𝑌 ) ) ) ) = 0 ) |