| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetrlin2.d | ⊢ 𝐷  =  ( 𝑁  maDet  𝑅 ) | 
						
							| 2 |  | mdetrlin2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mdetrlin2.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | mdetrlin2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 5 |  | mdetrlin2.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | mdetrlin2.x | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 7 |  | mdetrlin2.y | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐾 ) | 
						
							| 8 |  | mdetrlin2.z | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑍  ∈  𝐾 ) | 
						
							| 9 |  | mdetrlin2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 12 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 15 | 2 3 | ringacl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐾  ∧  𝑌  ∈  𝐾 )  →  ( 𝑋  +  𝑌 )  ∈  𝐾 ) | 
						
							| 16 | 14 6 7 15 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑋  +  𝑌 )  ∈  𝐾 ) | 
						
							| 17 | 16 8 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  ∈  𝐾 ) | 
						
							| 18 | 10 2 11 5 4 17 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 19 | 6 8 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 )  ∈  𝐾 ) | 
						
							| 20 | 10 2 11 5 4 19 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 21 | 7 8 | ifcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 )  ∈  𝐾 ) | 
						
							| 22 | 10 2 11 5 4 21 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 23 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  { 𝐼 }  ∈  V ) | 
						
							| 25 | 9 | snssd | ⊢ ( 𝜑  →  { 𝐼 }  ⊆  𝑁 ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝐼 }  ∧  𝑗  ∈  𝑁 )  →  { 𝐼 }  ⊆  𝑁 ) | 
						
							| 27 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝐼 }  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  { 𝐼 } ) | 
						
							| 28 | 26 27 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝐼 }  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 29 | 28 6 | syld3an2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝐼 }  ∧  𝑗  ∈  𝑁 )  →  𝑋  ∈  𝐾 ) | 
						
							| 30 | 28 7 | syld3an2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  { 𝐼 }  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  𝐾 ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 ) ) | 
						
							| 32 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 ) ) | 
						
							| 33 | 24 5 29 30 31 32 | offval22 | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  ( 𝑋  +  𝑌 ) ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  ( 𝑋  +  𝑌 ) )  =  ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 ) ) ) | 
						
							| 35 |  | mposnif | ⊢ ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  ( 𝑋  +  𝑌 ) ) | 
						
							| 36 |  | mposnif | ⊢ ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 ) | 
						
							| 37 |  | mposnif | ⊢ ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 ) | 
						
							| 38 | 36 37 | oveq12i | ⊢ ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) )  =  ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑋 )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  𝑌 ) ) | 
						
							| 39 | 34 35 38 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  =  ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) ) | 
						
							| 40 |  | ssid | ⊢ 𝑁  ⊆  𝑁 | 
						
							| 41 |  | resmpo | ⊢ ( ( { 𝐼 }  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) ) ) | 
						
							| 42 | 25 40 41 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) ) ) | 
						
							| 43 |  | resmpo | ⊢ ( ( { 𝐼 }  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) ) | 
						
							| 44 | 25 40 43 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) ) | 
						
							| 45 |  | resmpo | ⊢ ( ( { 𝐼 }  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) | 
						
							| 46 | 25 40 45 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) | 
						
							| 47 | 44 46 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) ) )  =  ( ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ∘f   +  ( 𝑖  ∈  { 𝐼 } ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) ) | 
						
							| 48 | 39 42 47 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  =  ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( { 𝐼 }  ×  𝑁 ) ) ) ) | 
						
							| 49 |  | eldifsni | ⊢ ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  →  𝑖  ≠  𝐼 ) | 
						
							| 50 | 49 | neneqd | ⊢ ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  →  ¬  𝑖  =  𝐼 ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  𝑍 ) | 
						
							| 52 |  | iffalse | ⊢ ( ¬  𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 )  =  𝑍 ) | 
						
							| 53 | 51 52 | eqtr4d | ⊢ ( ¬  𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) | 
						
							| 54 | 50 53 | syl | ⊢ ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) | 
						
							| 55 | 54 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) | 
						
							| 56 | 55 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) ) | 
						
							| 57 |  | difss | ⊢ ( 𝑁  ∖  { 𝐼 } )  ⊆  𝑁 | 
						
							| 58 |  | resmpo | ⊢ ( ( ( 𝑁  ∖  { 𝐼 } )  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) ) ) | 
						
							| 59 | 57 40 58 | mp2an | ⊢ ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) ) | 
						
							| 60 |  | resmpo | ⊢ ( ( ( 𝑁  ∖  { 𝐼 } )  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) ) | 
						
							| 61 | 57 40 60 | mp2an | ⊢ ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) | 
						
							| 62 | 56 59 61 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) ) ) | 
						
							| 63 |  | iffalse | ⊢ ( ¬  𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 )  =  𝑍 ) | 
						
							| 64 | 51 63 | eqtr4d | ⊢ ( ¬  𝑖  =  𝐼  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) | 
						
							| 65 | 50 64 | syl | ⊢ ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) | 
						
							| 66 | 65 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁  ∖  { 𝐼 } )  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 )  =  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) | 
						
							| 67 | 66 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) | 
						
							| 68 |  | resmpo | ⊢ ( ( ( 𝑁  ∖  { 𝐼 } )  ⊆  𝑁  ∧  𝑁  ⊆  𝑁 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) | 
						
							| 69 | 57 40 68 | mp2an | ⊢ ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( 𝑖  ∈  ( 𝑁  ∖  { 𝐼 } ) ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) | 
						
							| 70 | 67 59 69 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) )  ↾  ( ( 𝑁  ∖  { 𝐼 } )  ×  𝑁 ) ) ) | 
						
							| 71 | 1 10 11 3 4 18 20 22 9 48 62 70 | mdetrlin | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  ( 𝑋  +  𝑌 ) ,  𝑍 ) ) )  =  ( ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑋 ,  𝑍 ) ) )  +  ( 𝐷 ‘ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐼 ,  𝑌 ,  𝑍 ) ) ) ) ) |