| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mdetuni.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mdetuni.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | mdetuni.0g | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mdetuni.1r | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 6 |  | mdetuni.pg | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 7 |  | mdetuni.tg | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | mdetuni.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 9 |  | mdetuni.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | mdetuni.ff | ⊢ ( 𝜑  →  𝐷 : 𝐵 ⟶ 𝐾 ) | 
						
							| 11 |  | mdetuni.al | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  ) ) | 
						
							| 12 |  | mdetuni.li | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 13 |  | mdetuni.sc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 14 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  𝐹  ≠  𝐺 ) | 
						
							| 15 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) ) | 
						
							| 16 |  | neeq2 | ⊢ ( 𝑧  =  𝐺  →  ( 𝐹  ≠  𝑧  ↔  𝐹  ≠  𝐺 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑧  =  𝐺  →  ( 𝑧 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑧  =  𝐺  →  ( ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 )  ↔  ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑧  =  𝐺  →  ( ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 )  ↔  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) ) ) | 
						
							| 20 | 16 19 | anbi12d | ⊢ ( 𝑧  =  𝐺  →  ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  ↔  ( 𝐹  ≠  𝐺  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) ) ) ) | 
						
							| 21 | 20 | imbi1d | ⊢ ( 𝑧  =  𝐺  →  ( ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  )  ↔  ( ( 𝐹  ≠  𝐺  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) ) | 
						
							| 22 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  𝐸  ∈  𝐵 ) | 
						
							| 23 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  𝐹  ∈  𝑁 ) | 
						
							| 24 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  𝜑 ) | 
						
							| 25 | 24 11 | syl | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  ) ) | 
						
							| 26 |  | oveq | ⊢ ( 𝑥  =  𝐸  →  ( 𝑦 𝑥 𝑤 )  =  ( 𝑦 𝐸 𝑤 ) ) | 
						
							| 27 |  | oveq | ⊢ ( 𝑥  =  𝐸  →  ( 𝑧 𝑥 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 )  ↔  ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) | 
						
							| 29 | 28 | ralbidv | ⊢ ( 𝑥  =  𝐸  →  ( ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 )  ↔  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) | 
						
							| 30 | 29 | anbi2d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  ↔  ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝐷 ‘ 𝑥 )  =   0   ↔  ( 𝐷 ‘ 𝐸 )  =   0  ) ) | 
						
							| 32 | 30 31 | imbi12d | ⊢ ( 𝑥  =  𝐸  →  ( ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  )  ↔  ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) ) | 
						
							| 33 | 32 | ralbidv | ⊢ ( 𝑥  =  𝐸  →  ( ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  )  ↔  ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) ) | 
						
							| 34 |  | neeq1 | ⊢ ( 𝑦  =  𝐹  →  ( 𝑦  ≠  𝑧  ↔  𝐹  ≠  𝑧 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑦  =  𝐹  →  ( 𝑦 𝐸 𝑤 )  =  ( 𝐹 𝐸 𝑤 ) ) | 
						
							| 36 | 35 | eqeq1d | ⊢ ( 𝑦  =  𝐹  →  ( ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 )  ↔  ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) | 
						
							| 37 | 36 | ralbidv | ⊢ ( 𝑦  =  𝐹  →  ( ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 )  ↔  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) | 
						
							| 38 | 34 37 | anbi12d | ⊢ ( 𝑦  =  𝐹  →  ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  ↔  ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) ) ) ) | 
						
							| 39 | 38 | imbi1d | ⊢ ( 𝑦  =  𝐹  →  ( ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  )  ↔  ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) ) | 
						
							| 40 | 39 | ralbidv | ⊢ ( 𝑦  =  𝐹  →  ( ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  )  ↔  ∀ 𝑧  ∈  𝑁 ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) ) | 
						
							| 41 | 33 40 | rspc2va | ⊢ ( ( ( 𝐸  ∈  𝐵  ∧  𝐹  ∈  𝑁 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  ) )  →  ∀ 𝑧  ∈  𝑁 ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) | 
						
							| 42 | 22 23 25 41 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  ∀ 𝑧  ∈  𝑁 ( ( 𝐹  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝑧 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) | 
						
							| 43 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  𝐺  ∈  𝑁 ) | 
						
							| 44 | 21 42 43 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  ( ( 𝐹  ≠  𝐺  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) ) | 
						
							| 45 | 14 15 44 | mp2and | ⊢ ( ( ( 𝜑  ∧  𝐸  ∈  𝐵  ∧  ∀ 𝑤  ∈  𝑁 ( 𝐹 𝐸 𝑤 )  =  ( 𝐺 𝐸 𝑤 ) )  ∧  ( 𝐹  ∈  𝑁  ∧  𝐺  ∈  𝑁  ∧  𝐹  ≠  𝐺 ) )  →  ( 𝐷 ‘ 𝐸 )  =   0  ) |