Metamath Proof Explorer


Theorem mdetunilem1

Description: Lemma for mdetuni . (Contributed by SO, 14-Jul-2018)

Ref Expression
Hypotheses mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
mdetuni.0g 0 = ( 0g𝑅 )
mdetuni.1r 1 = ( 1r𝑅 )
mdetuni.pg + = ( +g𝑅 )
mdetuni.tg · = ( .r𝑅 )
mdetuni.n ( 𝜑𝑁 ∈ Fin )
mdetuni.r ( 𝜑𝑅 ∈ Ring )
mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
Assertion mdetunilem1 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ( 𝐷𝐸 ) = 0 )

Proof

Step Hyp Ref Expression
1 mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
3 mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
4 mdetuni.0g 0 = ( 0g𝑅 )
5 mdetuni.1r 1 = ( 1r𝑅 )
6 mdetuni.pg + = ( +g𝑅 )
7 mdetuni.tg · = ( .r𝑅 )
8 mdetuni.n ( 𝜑𝑁 ∈ Fin )
9 mdetuni.r ( 𝜑𝑅 ∈ Ring )
10 mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
11 mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
12 mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
13 mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
14 simpr3 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → 𝐹𝐺 )
15 simpl3 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) )
16 neeq2 ( 𝑧 = 𝐺 → ( 𝐹𝑧𝐹𝐺 ) )
17 oveq1 ( 𝑧 = 𝐺 → ( 𝑧 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) )
18 17 eqeq2d ( 𝑧 = 𝐺 → ( ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) )
19 18 ralbidv ( 𝑧 = 𝐺 → ( ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) )
20 16 19 anbi12d ( 𝑧 = 𝐺 → ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹𝐺 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) )
21 20 imbi1d ( 𝑧 = 𝐺 → ( ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ↔ ( ( 𝐹𝐺 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ) )
22 simpl2 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → 𝐸𝐵 )
23 simpr1 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → 𝐹𝑁 )
24 simpl1 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → 𝜑 )
25 24 11 syl ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
26 oveq ( 𝑥 = 𝐸 → ( 𝑦 𝑥 𝑤 ) = ( 𝑦 𝐸 𝑤 ) )
27 oveq ( 𝑥 = 𝐸 → ( 𝑧 𝑥 𝑤 ) = ( 𝑧 𝐸 𝑤 ) )
28 26 27 eqeq12d ( 𝑥 = 𝐸 → ( ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) )
29 28 ralbidv ( 𝑥 = 𝐸 → ( ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) )
30 29 anbi2d ( 𝑥 = 𝐸 → ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) ↔ ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) )
31 fveqeq2 ( 𝑥 = 𝐸 → ( ( 𝐷𝑥 ) = 0 ↔ ( 𝐷𝐸 ) = 0 ) )
32 30 31 imbi12d ( 𝑥 = 𝐸 → ( ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) ↔ ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ) )
33 32 ralbidv ( 𝑥 = 𝐸 → ( ∀ 𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) ↔ ∀ 𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ) )
34 neeq1 ( 𝑦 = 𝐹 → ( 𝑦𝑧𝐹𝑧 ) )
35 oveq1 ( 𝑦 = 𝐹 → ( 𝑦 𝐸 𝑤 ) = ( 𝐹 𝐸 𝑤 ) )
36 35 eqeq1d ( 𝑦 = 𝐹 → ( ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) )
37 36 ralbidv ( 𝑦 = 𝐹 → ( ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) )
38 34 37 anbi12d ( 𝑦 = 𝐹 → ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) )
39 38 imbi1d ( 𝑦 = 𝐹 → ( ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ↔ ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ) )
40 39 ralbidv ( 𝑦 = 𝐹 → ( ∀ 𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ↔ ∀ 𝑧𝑁 ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) ) )
41 33 40 rspc2va ( ( ( 𝐸𝐵𝐹𝑁 ) ∧ ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) ) → ∀ 𝑧𝑁 ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) )
42 22 23 25 41 syl21anc ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ∀ 𝑧𝑁 ( ( 𝐹𝑧 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) )
43 simpr2 ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → 𝐺𝑁 )
44 21 42 43 rspcdva ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ( ( 𝐹𝐺 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷𝐸 ) = 0 ) )
45 14 15 44 mp2and ( ( ( 𝜑𝐸𝐵 ∧ ∀ 𝑤𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹𝑁𝐺𝑁𝐹𝐺 ) ) → ( 𝐷𝐸 ) = 0 )