Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
14 |
|
mdetunilem5.ph |
⊢ ( 𝜓 → 𝜑 ) |
15 |
|
mdetunilem5.e |
⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
16 |
|
mdetunilem5.fgh |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) |
17 |
14 8
|
syl |
⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
18 |
14 9
|
syl |
⊢ ( 𝜓 → 𝑅 ∈ Ring ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
20 |
16
|
simp1d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
21 |
16
|
simp2d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
22 |
3 6
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
24 |
16
|
simp3d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
25 |
23 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ∈ 𝐾 ) |
26 |
1 3 2 17 18 25
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ) |
27 |
20 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ∈ 𝐾 ) |
28 |
1 3 2 17 18 27
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) |
29 |
21 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ∈ 𝐾 ) |
30 |
1 3 2 17 18 29
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ) |
31 |
|
snex |
⊢ { 𝐸 } ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜓 → { 𝐸 } ∈ V ) |
33 |
15
|
snssd |
⊢ ( 𝜓 → { 𝐸 } ⊆ 𝑁 ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → { 𝐸 } ⊆ 𝑁 ) |
35 |
|
simp2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ { 𝐸 } ) |
36 |
34 35
|
sseldd |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
37 |
36 20
|
syld3an2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
38 |
36 21
|
syld3an2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
39 |
|
eqidd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ) |
40 |
|
eqidd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) |
41 |
32 17 37 38 39 40
|
offval22 |
⊢ ( 𝜓 → ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) ) |
42 |
41
|
eqcomd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) ) |
43 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) |
44 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) |
45 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) |
46 |
44 45
|
oveq12i |
⊢ ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) |
47 |
42 43 46
|
3eqtr4g |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
48 |
|
ssid |
⊢ 𝑁 ⊆ 𝑁 |
49 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
50 |
33 48 49
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
51 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
52 |
33 48 51
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
53 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
54 |
33 48 53
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
55 |
52 54
|
oveq12d |
⊢ ( 𝜓 → ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
56 |
47 50 55
|
3eqtr4d |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) |
57 |
|
eldifsni |
⊢ ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) → 𝑎 ≠ 𝐸 ) |
58 |
57
|
3ad2ant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ≠ 𝐸 ) |
59 |
58
|
neneqd |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → ¬ 𝑎 = 𝐸 ) |
60 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = 𝐻 ) |
61 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) = 𝐻 ) |
62 |
60 61
|
eqtr4d |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
63 |
59 62
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
64 |
63
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
65 |
|
difss |
⊢ ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 |
66 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
67 |
65 48 66
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) |
68 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
69 |
65 48 68
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
70 |
64 67 69
|
3eqtr4g |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
71 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) = 𝐻 ) |
72 |
60 71
|
eqtr4d |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
73 |
59 72
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
74 |
73
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
75 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
76 |
65 48 75
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
77 |
74 67 76
|
3eqtr4g |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
78 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ∧ 𝐸 ∈ 𝑁 ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) ∧ ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |
79 |
14 26 28 30 15 56 70 77 78
|
syl332anc |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |