| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
| 7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
| 12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 14 |
|
mdetunilem6.ph |
⊢ ( 𝜓 → 𝜑 ) |
| 15 |
|
mdetunilem6.ef |
⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹 ) ) |
| 16 |
|
mdetunilem6.gh |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) |
| 17 |
|
mdetunilem6.i |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐼 ∈ 𝐾 ) |
| 18 |
15
|
simp1d |
⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
| 19 |
16
|
simprd |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 20 |
19
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 21 |
16
|
simpld |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 22 |
21
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 23 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 24 |
14 9 23
|
3syl |
⊢ ( 𝜓 → 𝑅 ∈ Grp ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Grp ) |
| 26 |
3 6
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 27 |
25 19 21 26
|
syl3anc |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 28 |
27
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
| 29 |
28 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) |
| 30 |
20 22 29
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) ) |
| 31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 30
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) ) |
| 32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = 0 ) |
| 33 |
15
|
simp2d |
⊢ ( 𝜓 → 𝐹 ∈ 𝑁 ) |
| 34 |
20 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
| 35 |
20 22 34
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 35
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 37 |
15
|
simp3d |
⊢ ( 𝜓 → 𝐸 ≠ 𝐹 ) |
| 38 |
37
|
necomd |
⊢ ( 𝜓 → 𝐹 ≠ 𝐸 ) |
| 39 |
33 18 38
|
3jca |
⊢ ( 𝜓 → ( 𝐹 ∈ 𝑁 ∧ 𝐸 ∈ 𝑁 ∧ 𝐹 ≠ 𝐸 ) ) |
| 40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 19 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = 0 ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 42 |
37
|
neneqd |
⊢ ( 𝜓 → ¬ 𝐸 = 𝐹 ) |
| 43 |
|
eqtr2 |
⊢ ( ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → 𝐸 = 𝐹 ) |
| 44 |
42 43
|
nsyl |
⊢ ( 𝜓 → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
| 46 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 48 |
47
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 50 |
14 10
|
syl |
⊢ ( 𝜓 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 51 |
14 8
|
syl |
⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
| 52 |
22 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
| 53 |
20 52
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ∈ 𝐾 ) |
| 54 |
1 3 2 51 24 53
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ∈ 𝐵 ) |
| 55 |
50 54
|
ffvelcdmd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 56 |
49 55
|
eqeltrrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 57 |
3 6 4
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 58 |
24 56 57
|
syl2anc |
⊢ ( 𝜓 → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 59 |
36 41 58
|
3eqtrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 60 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 61 |
45 60
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
| 62 |
61
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
| 64 |
59 63 49
|
3eqtr4d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) |
| 65 |
22 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
| 66 |
20 22 65
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) ) |
| 67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 66
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) ) |
| 68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 21 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = 0 ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) ) |
| 70 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 71 |
45 70
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 72 |
71
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 74 |
20 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
| 75 |
22 74
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ∈ 𝐾 ) |
| 76 |
1 3 2 51 24 75
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ∈ 𝐵 ) |
| 77 |
50 76
|
ffvelcdmd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 78 |
73 77
|
eqeltrrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
| 79 |
3 6 4
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 80 |
24 78 79
|
syl2anc |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 81 |
67 69 80
|
3eqtrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 82 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 83 |
45 82
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
| 84 |
83
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
| 86 |
81 85 73
|
3eqtr4d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
| 87 |
64 86
|
oveq12d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) ) |
| 88 |
31 32 87
|
3eqtr3rd |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) |
| 89 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 90 |
3 6 4 89
|
grpinvid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
| 91 |
24 55 77 90
|
syl3anc |
⊢ ( 𝜓 → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
| 92 |
88 91
|
mpbird |
⊢ ( 𝜓 → ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
| 93 |
92
|
eqcomd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) ) |