Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
14 |
|
mdetunilem8.id |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) |
15 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝜑 ) |
16 |
|
enrefg |
⊢ ( 𝑁 ∈ Fin → 𝑁 ≈ 𝑁 ) |
17 |
8 16
|
syl |
⊢ ( 𝜑 → 𝑁 ≈ 𝑁 ) |
18 |
|
f1finf1o |
⊢ ( ( 𝑁 ≈ 𝑁 ∧ 𝑁 ∈ Fin ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
19 |
17 8 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) |
21 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
22 |
8 9 21
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
23 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
24 |
2 23
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
25 |
22 24
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem7 |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) ) |
28 |
15 20 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) ) |
29 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝑁 ∈ Fin ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
31 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝑅 ∈ Ring ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
33 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) |
34 |
|
f1f |
⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 → 𝐸 : 𝑁 ⟶ 𝑁 ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐸 : 𝑁 ⟶ 𝑁 ) |
36 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
37 |
35 36
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐸 ‘ 𝑎 ) ∈ 𝑁 ) |
38 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
39 |
1 5 4 30 32 37 38 23
|
mat1ov |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) = if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) |
40 |
39
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( 𝐸 ‘ 𝑎 ) ( 1r ‘ 𝐴 ) 𝑏 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
42 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) ) |
44 |
|
zrhpsgnmhm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
45 |
9 8 44
|
syl2anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
46 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
48 |
47 3
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
49 |
46 48
|
mhmf |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
50 |
45 49
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ 𝐾 ) |
52 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
53 |
52 46
|
elsymgbas |
⊢ ( 𝑁 ∈ Fin → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
54 |
29 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↔ 𝐸 : 𝑁 –1-1-onto→ 𝑁 ) ) |
55 |
20 54
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → 𝐸 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
56 |
51 55
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) ∈ 𝐾 ) |
57 |
3 7 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) ∈ 𝐾 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) = 0 ) |
58 |
31 56 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · 0 ) = 0 ) |
59 |
43 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝐸 ) · ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) ) = 0 ) |
60 |
28 41 59
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 –1-1→ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |
61 |
60
|
ex |
⊢ ( 𝜑 → ( 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
63 |
|
dff13 |
⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
64 |
|
ibar |
⊢ ( 𝐸 : 𝑁 ⟶ 𝑁 → ( ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) ) |
66 |
63 65
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
67 |
66
|
notbid |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) ) |
68 |
|
rexnal |
⊢ ( ∃ 𝑐 ∈ 𝑁 ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
69 |
|
rexnal |
⊢ ( ∃ 𝑑 ∈ 𝑁 ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
70 |
|
df-ne |
⊢ ( 𝑐 ≠ 𝑑 ↔ ¬ 𝑐 = 𝑑 ) |
71 |
70
|
anbi2i |
⊢ ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ↔ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ ¬ 𝑐 = 𝑑 ) ) |
72 |
|
annim |
⊢ ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ ¬ 𝑐 = 𝑑 ) ↔ ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ) |
73 |
71 72
|
bitr2i |
⊢ ( ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
74 |
73
|
rexbii |
⊢ ( ∃ 𝑑 ∈ 𝑁 ¬ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
75 |
69 74
|
bitr3i |
⊢ ( ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
76 |
75
|
rexbii |
⊢ ( ∃ 𝑐 ∈ 𝑁 ¬ ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
77 |
68 76
|
bitr3i |
⊢ ( ¬ ∀ 𝑐 ∈ 𝑁 ∀ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → 𝑐 = 𝑑 ) ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) |
78 |
67 77
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) |
79 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ) |
80 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑐 → ( ( 𝐸 ‘ 𝑎 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) |
81 |
80
|
ifbid |
⊢ ( 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) |
82 |
|
iftrue |
⊢ ( 𝑎 = 𝑐 → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) |
83 |
81 82
|
eqtr4d |
⊢ ( 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
84 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐸 ‘ 𝑎 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑑 ) = 𝑏 ) ) |
85 |
84
|
ifbid |
⊢ ( 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) ) |
86 |
|
iftrue |
⊢ ( 𝑎 = 𝑑 → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) ) |
87 |
85 86
|
eqtr4d |
⊢ ( 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
88 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝑑 → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) |
89 |
88
|
eqcomd |
⊢ ( ¬ 𝑎 = 𝑑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
90 |
87 89
|
pm2.61i |
⊢ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) |
91 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝑐 → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
92 |
90 91
|
eqtr4id |
⊢ ( ¬ 𝑎 = 𝑐 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
93 |
83 92
|
pm2.61i |
⊢ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
94 |
|
eqeq1 |
⊢ ( ( 𝐸 ‘ 𝑑 ) = ( 𝐸 ‘ 𝑐 ) → ( ( 𝐸 ‘ 𝑑 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) |
95 |
94
|
eqcoms |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( ( 𝐸 ‘ 𝑑 ) = 𝑏 ↔ ( 𝐸 ‘ 𝑐 ) = 𝑏 ) ) |
96 |
95
|
ifbid |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) = if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ) |
97 |
96
|
ifeq1d |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) |
98 |
97
|
ifeq2d |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑑 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
99 |
93 98
|
syl5eq |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) = if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) |
100 |
99
|
mpoeq3dv |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) |
101 |
100
|
fveq2d |
⊢ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) ) |
102 |
79 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) ) |
103 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝜑 ) |
104 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑐 ∈ 𝑁 ) |
105 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑑 ∈ 𝑁 ) |
106 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → 𝑐 ≠ 𝑑 ) |
107 |
104 105 106
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ∧ 𝑐 ≠ 𝑑 ) ) |
108 |
3 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐾 ) |
109 |
9 108
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
110 |
3 4
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
111 |
9 110
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
112 |
109 111
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
113 |
112
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑏 ∈ 𝑁 ) → if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
114 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝜑 ) |
115 |
109 111
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
116 |
114 115
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ∈ 𝐾 ) |
117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 103 107 113 116
|
mdetunilem2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝑐 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( 𝑎 = 𝑑 , if ( ( 𝐸 ‘ 𝑐 ) = 𝑏 , 1 , 0 ) , if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) ) ) = 0 ) |
118 |
102 117
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ∧ ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |
119 |
118
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) ∧ ( 𝑐 ∈ 𝑁 ∧ 𝑑 ∈ 𝑁 ) ) → ( ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
120 |
119
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ∃ 𝑐 ∈ 𝑁 ∃ 𝑑 ∈ 𝑁 ( ( 𝐸 ‘ 𝑐 ) = ( 𝐸 ‘ 𝑑 ) ∧ 𝑐 ≠ 𝑑 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
121 |
78 120
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( ¬ 𝐸 : 𝑁 –1-1→ 𝑁 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) ) |
122 |
62 121
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝐸 : 𝑁 ⟶ 𝑁 ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( ( 𝐸 ‘ 𝑎 ) = 𝑏 , 1 , 0 ) ) ) = 0 ) |