Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
14 |
|
mdetunilem9.id |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 1r ‘ 𝐴 ) ) = 0 ) |
15 |
|
mdetunilem9.y |
⊢ 𝑌 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) } |
16 |
|
ral0 |
⊢ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
18 |
|
f1oi |
⊢ ( I ↾ 𝑁 ) : 𝑁 –1-1-onto→ 𝑁 |
19 |
|
f1of |
⊢ ( ( I ↾ 𝑁 ) : 𝑁 –1-1-onto→ 𝑁 → ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) |
20 |
18 19
|
mp1i |
⊢ ( 𝜑 → ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) |
21 |
8 8
|
elmapd |
⊢ ( 𝜑 → ( ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( I ↾ 𝑁 ) : 𝑁 ⟶ 𝑁 ) ) |
22 |
20 21
|
mpbird |
⊢ ( 𝜑 → ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → 𝑦 ∈ 𝐵 ) |
25 |
1 3 2
|
matbas2i |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
26 |
|
elmapi |
⊢ ( 𝑦 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) → 𝑦 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
27 |
25 26
|
syl |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
28 |
27
|
feqmptd |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) ) |
30 |
24 29
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) ) |
31 |
|
eqid |
⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) |
32 |
|
mpteq12 |
⊢ ( ( ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( ( ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
34 |
31 33
|
mpan |
⊢ ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
36 |
|
eleq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ↔ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ) |
38 |
|
elequ2 |
⊢ ( 𝑎 = 𝑧 → ( 𝑤 ∈ 𝑎 ↔ 𝑤 ∈ 𝑧 ) ) |
39 |
38
|
ifbid |
⊢ ( 𝑎 = 𝑧 → if ( 𝑤 ∈ 𝑎 , 1 , 0 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) |
40 |
39
|
mpteq2dv |
⊢ ( 𝑎 = 𝑧 → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑎 = 𝑧 → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) ) |
42 |
41
|
eqeq1d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ↔ ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) ) |
43 |
37 42
|
imbi12d |
⊢ ( 𝑎 = 𝑧 → ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) ) ) |
44 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑏 , 𝑐 〉 → ( 𝑤 ∈ 𝑎 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) |
45 |
44
|
ifbid |
⊢ ( 𝑤 = 〈 𝑏 , 𝑐 〉 → if ( 𝑤 ∈ 𝑎 , 1 , 0 ) = if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) |
46 |
45
|
mpompt |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) |
47 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) → 𝑎 : 𝑁 ⟶ 𝑁 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑎 : 𝑁 ⟶ 𝑁 ) |
49 |
48
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑎 Fn 𝑁 ) |
50 |
49
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑎 Fn 𝑁 ) |
51 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
52 |
|
fnopfvb |
⊢ ( ( 𝑎 Fn 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ‘ 𝑏 ) = 𝑐 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) |
53 |
50 51 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( ( 𝑎 ‘ 𝑏 ) = 𝑐 ↔ 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ) ) |
54 |
53
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 ↔ ( 𝑎 ‘ 𝑏 ) = 𝑐 ) ) |
55 |
54
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ) → if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) = if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) |
56 |
55
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( 〈 𝑏 , 𝑐 〉 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) |
57 |
46 56
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) = ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
mdetunilem8 |
⊢ ( ( 𝜑 ∧ 𝑎 : 𝑁 ⟶ 𝑁 ) → ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) = 0 ) |
60 |
47 59
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑏 ∈ 𝑁 , 𝑐 ∈ 𝑁 ↦ if ( ( 𝑎 ‘ 𝑏 ) = 𝑐 , 1 , 0 ) ) ) = 0 ) |
61 |
58 60
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑎 , 1 , 0 ) ) ) = 0 ) |
62 |
43 61
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
63 |
62
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) = 0 ) |
65 |
30 35 64
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) ∧ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) → ( 𝐷 ‘ 𝑦 ) = 0 ) |
66 |
65
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
67 |
66
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
68 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
69 |
8 8 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
70 |
|
raleq |
⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
71 |
70
|
imbi1d |
⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
72 |
71
|
2ralbidv |
⊢ ( 𝑥 = ( 𝑁 × 𝑁 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
73 |
72 15
|
elab2g |
⊢ ( ( 𝑁 × 𝑁 ) ∈ Fin → ( ( 𝑁 × 𝑁 ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
74 |
69 73
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑁 ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑁 × 𝑁 ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
75 |
67 74
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ 𝑌 ) |
76 |
|
ssid |
⊢ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) |
77 |
69
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
78 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ∅ ⊆ ( 𝑁 × 𝑁 ) ) ) |
79 |
78
|
3anbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
80 |
|
eleq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∈ 𝑌 ↔ ∅ ∈ 𝑌 ) ) |
81 |
80
|
notbid |
⊢ ( 𝑎 = ∅ → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ∅ ∈ 𝑌 ) ) |
82 |
79 81
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ∅ ∈ 𝑌 ) ) ) |
83 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) ) |
84 |
83
|
3anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
85 |
|
eleq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ 𝑌 ↔ 𝑏 ∈ 𝑌 ) ) |
86 |
85
|
notbid |
⊢ ( 𝑎 = 𝑏 → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ 𝑏 ∈ 𝑌 ) ) |
87 |
84 86
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) ) ) |
88 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) ) |
89 |
88
|
3anbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
90 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∈ 𝑌 ↔ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
91 |
90
|
notbid |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
92 |
89 91
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
93 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( 𝑎 ⊆ ( 𝑁 × 𝑁 ) ↔ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) ) |
94 |
93
|
3anbi2d |
⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) ) |
95 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( 𝑎 ∈ 𝑌 ↔ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
96 |
95
|
notbid |
⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ¬ 𝑎 ∈ 𝑌 ↔ ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
97 |
94 96
|
imbi12d |
⊢ ( 𝑎 = ( 𝑁 × 𝑁 ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑎 ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) ) |
98 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ∅ ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ∅ ∈ 𝑌 ) |
99 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
100 |
|
sstr2 |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) ) |
101 |
99 100
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
102 |
101
|
3anim2i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) ) |
103 |
102
|
imim1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) ) |
104 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝜑 ) |
105 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) |
106 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑎 ∈ 𝐵 ) |
107 |
1 3 2
|
matbas2i |
⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
108 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
109 |
107 108
|
syl |
⊢ ( 𝑎 ∈ 𝐵 → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
110 |
109
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
111 |
110
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
112 |
111
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
113 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
114 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
115 |
113 114
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
116 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑅 ∈ Grp ) |
117 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑎 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
118 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) |
119 |
118
|
unssbd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → { 𝑐 } ⊆ ( 𝑁 × 𝑁 ) ) |
120 |
|
vex |
⊢ 𝑐 ∈ V |
121 |
120
|
snss |
⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) ↔ { 𝑐 } ⊆ ( 𝑁 × 𝑁 ) ) |
122 |
119 121
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑐 ∈ ( 𝑁 × 𝑁 ) ) |
123 |
|
xp1st |
⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
125 |
124
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → { ( 1st ‘ 𝑐 ) } ⊆ 𝑁 ) |
126 |
|
xpss1 |
⊢ ( { ( 1st ‘ 𝑐 ) } ⊆ 𝑁 → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) |
127 |
125 126
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) |
128 |
127
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → 𝑒 ∈ ( 𝑁 × 𝑁 ) ) |
129 |
117 128
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) |
130 |
3 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐾 ) |
131 |
113 130
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 1 ∈ 𝐾 ) |
132 |
3 4
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
133 |
113 132
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 0 ∈ 𝐾 ) |
134 |
131 133
|
ifcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
135 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
136 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
137 |
3 6 136
|
grpnpcan |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ∧ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
138 |
116 129 135 137
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
139 |
138
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
140 |
139
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
141 |
|
iftrue |
⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
142 |
|
iftrue |
⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) |
143 |
141 142
|
oveq12d |
⊢ ( 𝑒 = 𝑐 → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
144 |
143
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) + if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
145 |
140 144
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
146 |
3 6 4
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) → ( 0 + ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
147 |
116 129 146
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 0 + ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
148 |
147
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
149 |
148
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
150 |
|
iffalse |
⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = 0 ) |
151 |
|
iffalse |
⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
152 |
150 151
|
oveq12d |
⊢ ( ¬ 𝑒 = 𝑐 → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
153 |
152
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 0 + ( 𝑎 ‘ 𝑒 ) ) ) |
154 |
149 153
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
155 |
145 154
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) = ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
156 |
155
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
157 |
|
snfi |
⊢ { ( 1st ‘ 𝑐 ) } ∈ Fin |
158 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
159 |
|
xpfi |
⊢ ( ( { ( 1st ‘ 𝑐 ) } ∈ Fin ∧ 𝑁 ∈ Fin ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ∈ Fin ) |
160 |
157 158 159
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ∈ Fin ) |
161 |
|
ovex |
⊢ ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ V |
162 |
4
|
fvexi |
⊢ 0 ∈ V |
163 |
161 162
|
ifex |
⊢ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ V |
164 |
163
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ V ) |
165 |
5
|
fvexi |
⊢ 1 ∈ V |
166 |
165 162
|
ifex |
⊢ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ V |
167 |
|
fvex |
⊢ ( 𝑎 ‘ 𝑒 ) ∈ V |
168 |
166 167
|
ifex |
⊢ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V |
169 |
168
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V ) |
170 |
|
xp1st |
⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) → ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } ) |
171 |
|
elsni |
⊢ ( ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
172 |
|
iftrue |
⊢ ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
173 |
170 171 172
|
3syl |
⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
174 |
173
|
mpteq2ia |
⊢ ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
175 |
174
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) ) |
176 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
177 |
160 164 169 175 176
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) + if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
178 |
156 177
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) = ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
179 |
127
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
180 |
127
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
181 |
127
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
182 |
180 181
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) = ( ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∘f + ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
183 |
178 179 182
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
184 |
112 183
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
185 |
111
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
186 |
|
xp1st |
⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ( 1st ‘ 𝑒 ) ∈ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ) |
187 |
|
eldifsni |
⊢ ( ( 1st ‘ 𝑒 ) ∈ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) → ( 1st ‘ 𝑒 ) ≠ ( 1st ‘ 𝑐 ) ) |
188 |
186 187
|
syl |
⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ( 1st ‘ 𝑒 ) ≠ ( 1st ‘ 𝑐 ) ) |
189 |
188
|
neneqd |
⊢ ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) → ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
190 |
189
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
191 |
190
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
192 |
191
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
193 |
|
difss |
⊢ ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ⊆ 𝑁 |
194 |
|
xpss1 |
⊢ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ⊆ 𝑁 → ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ) |
195 |
193 194
|
ax-mp |
⊢ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) |
196 |
|
resmpt |
⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
197 |
195 196
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
198 |
|
resmpt |
⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
199 |
195 198
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
200 |
192 197 199
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
201 |
185 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
202 |
|
fveq2 |
⊢ ( 𝑒 = 𝑐 → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
203 |
190 202
|
nsyl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → ¬ 𝑒 = 𝑐 ) |
204 |
203
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
205 |
204
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ) |
206 |
|
resmpt |
⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
207 |
195 206
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
208 |
205 207 199
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑎 ‘ 𝑒 ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
209 |
185 208
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
210 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
211 |
110
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ) |
212 |
210 211
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
213 |
212
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
214 |
3
|
fvexi |
⊢ 𝐾 ∈ V |
215 |
68
|
anidms |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
216 |
158 215
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
217 |
|
elmapg |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
218 |
214 216 217
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
219 |
213 218
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
220 |
1 3
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
221 |
158 113 220
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
222 |
221 2
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = 𝐵 ) |
223 |
219 222
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
224 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
225 |
115
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → 𝑅 ∈ Grp ) |
226 |
3 136
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑒 ) ∈ 𝐾 ∧ if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
227 |
225 211 210 226
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
228 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → 0 ∈ 𝐾 ) |
229 |
227 228
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ∈ 𝐾 ) |
230 |
229 211
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
231 |
230
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
232 |
|
elmapg |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
233 |
214 216 232
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
234 |
231 233
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
235 |
234 222
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
236 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
237 |
|
reseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) ) |
238 |
237
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
239 |
|
reseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) |
240 |
239
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
241 |
239
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
242 |
238 240 241
|
3anbi123d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
243 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
244 |
242 243
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
245 |
244
|
2ralbidv |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
246 |
|
reseq1 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) |
247 |
246
|
oveq1d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
248 |
247
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
249 |
|
reseq1 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) |
250 |
249
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
251 |
248 250
|
3anbi12d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
252 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
253 |
252
|
oveq1d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) |
254 |
253
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
255 |
251 254
|
imbi12d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
256 |
255
|
2ralbidv |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
257 |
245 256
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
258 |
224 235 236 257
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
259 |
|
reseq1 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) |
260 |
259
|
oveq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
261 |
260
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
262 |
|
reseq1 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) |
263 |
262
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
264 |
261 263
|
3anbi13d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
265 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
266 |
265
|
oveq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
267 |
266
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
268 |
264 267
|
imbi12d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
269 |
|
sneq |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → { 𝑤 } = { ( 1st ‘ 𝑐 ) } ) |
270 |
269
|
xpeq1d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( { 𝑤 } × 𝑁 ) = ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) |
271 |
270
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
272 |
270
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
273 |
270
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
274 |
272 273
|
oveq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
275 |
271 274
|
eqeq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) ) |
276 |
269
|
difeq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑁 ∖ { 𝑤 } ) = ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) ) |
277 |
276
|
xpeq1d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) = ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) |
278 |
277
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
279 |
277
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
280 |
278 279
|
eqeq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
281 |
277
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
282 |
278 281
|
eqeq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
283 |
275 280 282
|
3anbi123d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) ) |
284 |
283
|
imbi1d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ↔ ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
285 |
268 284
|
rspc2va |
⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑎 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ 𝑧 ) ) ) ) → ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
286 |
223 124 258 285
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∘f + ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ∧ ( 𝑎 ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
287 |
184 201 209 286
|
mp3and |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
288 |
104 105 106 287
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ 𝑎 ) = ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
289 |
|
fveq2 |
⊢ ( 𝑒 = 𝑐 → ( 𝑎 ‘ 𝑒 ) = ( 𝑎 ‘ 𝑐 ) ) |
290 |
|
elequ1 |
⊢ ( 𝑒 = 𝑐 → ( 𝑒 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑 ) ) |
291 |
290
|
ifbid |
⊢ ( 𝑒 = 𝑐 → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
292 |
289 291
|
oveq12d |
⊢ ( 𝑒 = 𝑐 → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
293 |
292
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
294 |
110 122
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ‘ 𝑐 ) ∈ 𝐾 ) |
295 |
131 133
|
ifcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) |
296 |
3 136
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 ‘ 𝑐 ) ∈ 𝐾 ∧ if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
297 |
115 294 295 296
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) |
298 |
3 7 5
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
299 |
113 297 298
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
300 |
299
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
301 |
293 300
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
302 |
141
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) ) |
303 |
|
iftrue |
⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , 1 , 0 ) = 1 ) |
304 |
303
|
oveq2d |
⊢ ( 𝑒 = 𝑐 → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
305 |
304
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 1 ) ) |
306 |
301 302 305
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
307 |
3 7 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) = 0 ) |
308 |
113 297 307
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) = 0 ) |
309 |
308
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 0 = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
310 |
309
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → 0 = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
311 |
150
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = 0 ) |
312 |
|
iffalse |
⊢ ( ¬ 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , 1 , 0 ) = 0 ) |
313 |
312
|
oveq2d |
⊢ ( ¬ 𝑒 = 𝑐 → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
314 |
313
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
315 |
310 311 314
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ∧ ¬ 𝑒 = 𝑐 ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
316 |
306 315
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
317 |
170
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 1st ‘ 𝑒 ) ∈ { ( 1st ‘ 𝑐 ) } ) |
318 |
317 171
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ) |
319 |
318
|
iftrued |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) ) |
320 |
318
|
iftrued |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑒 = 𝑐 , 1 , 0 ) ) |
321 |
320
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( 𝑒 = 𝑐 , 1 , 0 ) ) ) |
322 |
316 319 321
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
323 |
322
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
324 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ V ) |
325 |
165 162
|
ifex |
⊢ if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ V |
326 |
325 167
|
ifex |
⊢ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V |
327 |
326
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ V ) |
328 |
|
fconstmpt |
⊢ ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
329 |
328
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) ) |
330 |
127
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
331 |
160 324 327 329 330
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) = ( 𝑒 ∈ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ↦ ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
332 |
323 180 331
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
333 |
|
iffalse |
⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
334 |
|
iffalse |
⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = ( 𝑎 ‘ 𝑒 ) ) |
335 |
333 334
|
eqtr4d |
⊢ ( ¬ ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
336 |
190 335
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
337 |
336
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
338 |
|
resmpt |
⊢ ( ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
339 |
195 338
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( 𝑒 ∈ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) |
340 |
337 197 339
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
341 |
131 133
|
ifcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ 𝐾 ) |
342 |
341
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( 𝑒 = 𝑐 , 1 , 0 ) ∈ 𝐾 ) |
343 |
342 211
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑒 ∈ ( 𝑁 × 𝑁 ) ) → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ∈ 𝐾 ) |
344 |
343
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) |
345 |
|
elmapg |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
346 |
214 216 345
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
347 |
344 346
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
348 |
347 222
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
349 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
350 |
|
reseq1 |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) |
351 |
350
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
352 |
|
reseq1 |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) |
353 |
352
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
354 |
351 353
|
anbi12d |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
355 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
356 |
354 355
|
imbi12d |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
357 |
356
|
2ralbidv |
⊢ ( 𝑥 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
358 |
|
sneq |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → { 𝑦 } = { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) |
359 |
358
|
xpeq2d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) = ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ) |
360 |
359
|
oveq1d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
361 |
360
|
eqeq2d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
362 |
361
|
anbi1d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
363 |
|
oveq1 |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) |
364 |
363
|
eqeq2d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
365 |
362 364
|
imbi12d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
366 |
365
|
2ralbidv |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) ) |
367 |
357 366
|
rspc2va |
⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ∈ 𝐾 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
368 |
235 297 349 367
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) |
369 |
|
reseq1 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) |
370 |
369
|
oveq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) |
371 |
370
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ) ) |
372 |
|
reseq1 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) |
373 |
372
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) |
374 |
371 373
|
anbi12d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ) ) |
375 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) |
376 |
375
|
oveq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
377 |
376
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
378 |
374 377
|
imbi12d |
⊢ ( 𝑧 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
379 |
270
|
xpeq1d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) = ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ) |
380 |
270
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) |
381 |
379 380
|
oveq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) |
382 |
272 381
|
eqeq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ) ) |
383 |
277
|
reseq2d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) |
384 |
279 383
|
eqeq12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) |
385 |
382 384
|
anbi12d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) ↔ ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) ) ) |
386 |
385
|
imbi1d |
⊢ ( 𝑤 = ( 1st ‘ 𝑐 ) → ( ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ↔ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) |
387 |
378 386
|
rspc2va |
⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ 𝑧 ) ) ) ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
388 |
348 124 368 387
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) = ( ( ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) × { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) } ) ∘f · ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( { ( 1st ‘ 𝑐 ) } × 𝑁 ) ) ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ↾ ( ( 𝑁 ∖ { ( 1st ‘ 𝑐 ) } ) × 𝑁 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) |
389 |
332 340 388
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
390 |
389
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
391 |
104 105 106 390
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒 ∈ 𝑑 , 1 , 0 ) ) , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) |
392 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) |
393 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) |
394 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
395 |
|
ralss |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) ) |
396 |
99 395
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
397 |
|
iftrue |
⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) |
398 |
397
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) |
399 |
|
ibar |
⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) ) |
400 |
399
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) ) |
401 |
|
relxp |
⊢ Rel ( 𝑁 × 𝑁 ) |
402 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) |
403 |
402
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
404 |
403
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
405 |
|
1st2nd |
⊢ ( ( Rel ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ ( 𝑁 × 𝑁 ) ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
406 |
401 404 405
|
sylancr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
407 |
406
|
eleq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
408 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) |
409 |
|
elmapi |
⊢ ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) → 𝑑 : 𝑁 ⟶ 𝑁 ) |
410 |
409
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → 𝑑 : 𝑁 ⟶ 𝑁 ) |
411 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
412 |
|
xp2nd |
⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
413 |
122 412
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
414 |
413
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
415 |
|
fsets |
⊢ ( ( ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ 𝑑 : 𝑁 ⟶ 𝑁 ) ∧ ( 1st ‘ 𝑐 ) ∈ 𝑁 ∧ ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) |
416 |
408 410 411 414 415
|
syl211anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) |
417 |
416
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ) |
418 |
417
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ) |
419 |
|
xp1st |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) |
420 |
403 419
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) |
421 |
420
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝑁 ) |
422 |
|
fnopfvb |
⊢ ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) Fn 𝑁 ∧ ( 1st ‘ 𝑤 ) ∈ 𝑁 ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
423 |
418 421 422
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
424 |
|
fveq2 |
⊢ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) ) |
425 |
424
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) ) |
426 |
|
vex |
⊢ 𝑑 ∈ V |
427 |
|
fvex |
⊢ ( 1st ‘ 𝑐 ) ∈ V |
428 |
|
fvex |
⊢ ( 2nd ‘ 𝑐 ) ∈ V |
429 |
|
fvsetsid |
⊢ ( ( 𝑑 ∈ V ∧ ( 1st ‘ 𝑐 ) ∈ V ∧ ( 2nd ‘ 𝑐 ) ∈ V ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) = ( 2nd ‘ 𝑐 ) ) |
430 |
426 427 428 429
|
mp3an |
⊢ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑐 ) ) = ( 2nd ‘ 𝑐 ) |
431 |
425 430
|
eqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑐 ) ) |
432 |
431
|
eqeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 𝑤 ) ) ) |
433 |
|
eqcom |
⊢ ( ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) |
434 |
432 433
|
bitrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ) |
435 |
407 423 434
|
3bitr2rd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
436 |
122
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑐 ∈ ( 𝑁 × 𝑁 ) ) |
437 |
|
xpopth |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ 𝑐 ∈ ( 𝑁 × 𝑁 ) ) → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ↔ 𝑤 = 𝑐 ) ) |
438 |
404 436 437
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ∧ ( 2nd ‘ 𝑤 ) = ( 2nd ‘ 𝑐 ) ) ↔ 𝑤 = 𝑐 ) ) |
439 |
400 435 438
|
3bitr3rd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 = 𝑐 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
440 |
439
|
ifbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( 𝑤 = 𝑐 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
441 |
398 440
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
442 |
441
|
a1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
443 |
|
elsni |
⊢ ( 𝑤 ∈ { 𝑐 } → 𝑤 = 𝑐 ) |
444 |
443
|
fveq2d |
⊢ ( 𝑤 ∈ { 𝑐 } → ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) |
445 |
444
|
con3i |
⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ¬ 𝑤 ∈ { 𝑐 } ) |
446 |
445
|
adantl |
⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ¬ 𝑤 ∈ { 𝑐 } ) |
447 |
|
elun |
⊢ ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ↔ ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) |
448 |
447
|
biimpi |
⊢ ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) → ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) |
449 |
448
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) ) |
450 |
|
orel2 |
⊢ ( ¬ 𝑤 ∈ { 𝑐 } → ( ( 𝑤 ∈ 𝑏 ∨ 𝑤 ∈ { 𝑐 } ) → 𝑤 ∈ 𝑏 ) ) |
451 |
446 449 450
|
sylc |
⊢ ( ( 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ 𝑏 ) |
452 |
451
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → 𝑤 ∈ 𝑏 ) |
453 |
|
iffalse |
⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
454 |
453
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
455 |
|
setsres |
⊢ ( 𝑑 ∈ V → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) = ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) |
456 |
455
|
eleq2d |
⊢ ( 𝑑 ∈ V → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) ) |
457 |
426 456
|
mp1i |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ) ) |
458 |
|
fvex |
⊢ ( 1st ‘ 𝑤 ) ∈ V |
459 |
458
|
a1i |
⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ∈ V ) |
460 |
|
neqne |
⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ≠ ( 1st ‘ 𝑐 ) ) |
461 |
|
eldifsn |
⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ↔ ( ( 1st ‘ 𝑤 ) ∈ V ∧ ( 1st ‘ 𝑤 ) ≠ ( 1st ‘ 𝑐 ) ) ) |
462 |
459 460 461
|
sylanbrc |
⊢ ( ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) → ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) |
463 |
|
fvex |
⊢ ( 2nd ‘ 𝑤 ) ∈ V |
464 |
463
|
opres |
⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
465 |
464
|
adantl |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
466 |
|
1st2nd2 |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
467 |
466
|
eleq1d |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
468 |
467
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
469 |
465 468
|
bitr4d |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
470 |
403 462 469
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
471 |
463
|
opres |
⊢ ( ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
472 |
471
|
adantl |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
473 |
466
|
eleq1d |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( 𝑤 ∈ 𝑑 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
474 |
473
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 𝑤 ∈ 𝑑 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ 𝑑 ) ) |
475 |
472 474
|
bitr4d |
⊢ ( ( 𝑤 ∈ ( 𝑁 × 𝑁 ) ∧ ( 1st ‘ 𝑤 ) ∈ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ 𝑑 ) ) |
476 |
403 462 475
|
syl2an |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( 𝑑 ↾ ( V ∖ { ( 1st ‘ 𝑐 ) } ) ) ↔ 𝑤 ∈ 𝑑 ) ) |
477 |
457 470 476
|
3bitr3rd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( 𝑤 ∈ 𝑑 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
478 |
477
|
ifbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
479 |
454 478
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
480 |
|
ifeq2 |
⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
481 |
480
|
eqeq1d |
⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
482 |
479 481
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
483 |
452 482
|
embantd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) ∧ ¬ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
484 |
442 483
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
485 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑤 → ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) ↔ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) ) ) |
486 |
|
equequ1 |
⊢ ( 𝑒 = 𝑤 → ( 𝑒 = 𝑐 ↔ 𝑤 = 𝑐 ) ) |
487 |
486
|
ifbid |
⊢ ( 𝑒 = 𝑤 → if ( 𝑒 = 𝑐 , 1 , 0 ) = if ( 𝑤 = 𝑐 , 1 , 0 ) ) |
488 |
|
fveq2 |
⊢ ( 𝑒 = 𝑤 → ( 𝑎 ‘ 𝑒 ) = ( 𝑎 ‘ 𝑤 ) ) |
489 |
485 487 488
|
ifbieq12d |
⊢ ( 𝑒 = 𝑤 → if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
490 |
|
eqid |
⊢ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
491 |
165 162
|
ifex |
⊢ if ( 𝑤 = 𝑐 , 1 , 0 ) ∈ V |
492 |
|
fvex |
⊢ ( 𝑎 ‘ 𝑤 ) ∈ V |
493 |
491 492
|
ifex |
⊢ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ∈ V |
494 |
489 490 493
|
fvmpt |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
495 |
494
|
eqeq1d |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
496 |
403 495
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ↔ if ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑐 ) , if ( 𝑤 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
497 |
484 496
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ) → ( ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
498 |
497
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑤 ∈ 𝑏 → ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
499 |
396 498
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
500 |
499
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
501 |
500
|
3adantr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
502 |
348
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
503 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) |
504 |
503 409
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑑 : 𝑁 ⟶ 𝑁 ) |
505 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 1st ‘ 𝑐 ) ∈ 𝑁 ) |
506 |
413
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 2nd ‘ 𝑐 ) ∈ 𝑁 ) |
507 |
503 504 505 506 415
|
syl211anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) |
508 |
158 158
|
elmapd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) |
509 |
508
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ↔ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) |
510 |
507 509
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ) |
511 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) |
512 |
|
raleq |
⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
513 |
512
|
imbi1d |
⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
514 |
513
|
2ralbidv |
⊢ ( 𝑥 = ( 𝑏 ∪ { 𝑐 } ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
515 |
514 15
|
elab2g |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
516 |
515
|
ibi |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
517 |
511 516
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
518 |
|
fveq1 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) |
519 |
518
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
520 |
519
|
ralbidv |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
521 |
|
fveqeq2 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
522 |
520 521
|
imbi12d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
523 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ) ) |
524 |
523
|
ifbid |
⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) |
525 |
524
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
526 |
525
|
ralbidv |
⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) ) ) |
527 |
526
|
imbi1d |
⊢ ( 𝑧 = ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
528 |
522 527
|
rspc2va |
⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
529 |
502 510 517 528
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ ( 𝑑 sSet 〈 ( 1st ‘ 𝑐 ) , ( 2nd ‘ 𝑐 ) 〉 ) , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
530 |
501 529
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) |
531 |
530
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) ) |
532 |
118
|
unssad |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
533 |
532
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → 𝑏 ⊆ ( 𝑁 × 𝑁 ) ) |
534 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
535 |
|
ssel2 |
⊢ ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
536 |
535
|
adantr |
⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → 𝑤 ∈ ( 𝑁 × 𝑁 ) ) |
537 |
|
elequ1 |
⊢ ( 𝑒 = 𝑤 → ( 𝑒 ∈ 𝑑 ↔ 𝑤 ∈ 𝑑 ) ) |
538 |
537
|
ifbid |
⊢ ( 𝑒 = 𝑤 → if ( 𝑒 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
539 |
486 538 488
|
ifbieq12d |
⊢ ( 𝑒 = 𝑤 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
540 |
|
eqid |
⊢ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) |
541 |
165 162
|
ifex |
⊢ if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∈ V |
542 |
541 492
|
ifex |
⊢ if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ∈ V |
543 |
539 540 542
|
fvmpt |
⊢ ( 𝑤 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
544 |
536 543
|
syl |
⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) ) |
545 |
|
ifeq2 |
⊢ ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
546 |
545
|
adantl |
⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
547 |
|
ifid |
⊢ if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) |
548 |
546 547
|
eqtrdi |
⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → if ( 𝑤 = 𝑐 , if ( 𝑤 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑤 ) ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
549 |
544 548
|
eqtrd |
⊢ ( ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) ∧ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
550 |
549
|
ex |
⊢ ( ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑤 ∈ 𝑏 ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
551 |
550
|
ralimdva |
⊢ ( 𝑏 ⊆ ( 𝑁 × 𝑁 ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
552 |
533 534 551
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
553 |
142 291
|
eqtrd |
⊢ ( 𝑒 = 𝑐 → if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
554 |
165 162
|
ifex |
⊢ if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ∈ V |
555 |
553 540 554
|
fvmpt |
⊢ ( 𝑐 ∈ ( 𝑁 × 𝑁 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
556 |
122 555
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
557 |
556
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
558 |
|
fveq2 |
⊢ ( 𝑤 = 𝑐 → ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) ) |
559 |
|
elequ1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑 ) ) |
560 |
559
|
ifbid |
⊢ ( 𝑤 = 𝑐 → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) |
561 |
558 560
|
eqeq12d |
⊢ ( 𝑤 = 𝑐 → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
562 |
561
|
ralunsn |
⊢ ( 𝑐 ∈ V → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) ) |
563 |
562
|
elv |
⊢ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ∧ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) = if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) ) |
564 |
552 557 563
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
565 |
223
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ) |
566 |
|
fveq1 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( 𝑦 ‘ 𝑤 ) = ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) |
567 |
566
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
568 |
567
|
ralbidv |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
569 |
|
fveqeq2 |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
570 |
568 569
|
imbi12d |
⊢ ( 𝑦 = ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
571 |
|
elequ2 |
⊢ ( 𝑧 = 𝑑 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑑 ) ) |
572 |
571
|
ifbid |
⊢ ( 𝑧 = 𝑑 → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) |
573 |
572
|
eqeq2d |
⊢ ( 𝑧 = 𝑑 → ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
574 |
573
|
ralbidv |
⊢ ( 𝑧 = 𝑑 → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
575 |
574
|
imbi1d |
⊢ ( 𝑧 = 𝑑 → ( ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ↔ ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) ) |
576 |
570 575
|
rspc2va |
⊢ ( ( ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
577 |
565 503 517 576
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ∀ 𝑤 ∈ ( 𝑏 ∪ { 𝑐 } ) ( ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) ) |
578 |
564 577
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) = 0 ) |
579 |
531 578
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) ) |
580 |
308
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = ( 0 + 0 ) ) |
581 |
3 6 4
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ 𝐾 ) → ( 0 + 0 ) = 0 ) |
582 |
115 133 581
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
583 |
580 582
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = 0 ) |
584 |
583
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · 0 ) + 0 ) = 0 ) |
585 |
579 584
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = 0 ) |
586 |
104 105 106 392 393 394 585
|
syl33anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐 ∈ 𝑑 , 1 , 0 ) ) · ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( ( 1st ‘ 𝑒 ) = ( 1st ‘ 𝑐 ) , if ( 𝑒 = 𝑐 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) + ( 𝐷 ‘ ( 𝑒 ∈ ( 𝑁 × 𝑁 ) ↦ if ( 𝑒 = 𝑐 , if ( 𝑒 ∈ 𝑑 , 1 , 0 ) , ( 𝑎 ‘ 𝑒 ) ) ) ) ) = 0 ) |
587 |
288 391 586
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) → ( 𝐷 ‘ 𝑎 ) = 0 ) |
588 |
587
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ) ) → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
589 |
588
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
590 |
|
fveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
591 |
590
|
eqeq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
592 |
591
|
ralbidv |
⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ) ) |
593 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝑦 → ( ( 𝐷 ‘ 𝑎 ) = 0 ↔ ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
594 |
592 593
|
imbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
595 |
|
elequ2 |
⊢ ( 𝑑 = 𝑧 → ( 𝑤 ∈ 𝑑 ↔ 𝑤 ∈ 𝑧 ) ) |
596 |
595
|
ifbid |
⊢ ( 𝑑 = 𝑧 → if ( 𝑤 ∈ 𝑑 , 1 , 0 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) |
597 |
596
|
eqeq2d |
⊢ ( 𝑑 = 𝑧 → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
598 |
597
|
ralbidv |
⊢ ( 𝑑 = 𝑧 → ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
599 |
598
|
imbi1d |
⊢ ( 𝑑 = 𝑧 → ( ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
600 |
594 599
|
cbvral2vw |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑑 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑑 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
601 |
589 600
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
602 |
|
vex |
⊢ 𝑏 ∈ V |
603 |
|
raleq |
⊢ ( 𝑥 = 𝑏 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
604 |
603
|
imbi1d |
⊢ ( 𝑥 = 𝑏 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
605 |
604
|
2ralbidv |
⊢ ( 𝑥 = 𝑏 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
606 |
602 605 15
|
elab2 |
⊢ ( 𝑏 ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑏 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
607 |
601 606
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) → 𝑏 ∈ 𝑌 ) |
608 |
607
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 → 𝑏 ∈ 𝑌 ) ) |
609 |
608
|
con3d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
610 |
609
|
3adant3 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) |
611 |
610
|
a1i |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ( ¬ 𝑏 ∈ 𝑌 → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
612 |
611
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
613 |
103 612
|
syl5 |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( 𝜑 ∧ 𝑏 ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ 𝑏 ∈ 𝑌 ) → ( ( 𝜑 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑏 ∪ { 𝑐 } ) ∈ 𝑌 ) ) ) |
614 |
82 87 92 97 98 613
|
findcard2s |
⊢ ( ( 𝑁 × 𝑁 ) ∈ Fin → ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
615 |
77 614
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) ∧ ¬ ∅ ∈ 𝑌 ) → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) |
616 |
615
|
3exp |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑁 ) ⊆ ( 𝑁 × 𝑁 ) → ( ¬ ∅ ∈ 𝑌 → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) ) |
617 |
76 616
|
mpi |
⊢ ( 𝜑 → ( ¬ ∅ ∈ 𝑌 → ¬ ( 𝑁 × 𝑁 ) ∈ 𝑌 ) ) |
618 |
75 617
|
mt4d |
⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
619 |
618
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∅ ∈ 𝑌 ) |
620 |
|
0ex |
⊢ ∅ ∈ V |
621 |
|
raleq |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
622 |
621
|
imbi1d |
⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
623 |
622
|
2ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ 𝑥 ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) ) |
624 |
620 623 15
|
elab2 |
⊢ ( ∅ ∈ 𝑌 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
625 |
619 624
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) |
626 |
|
fveq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ‘ 𝑤 ) = ( 𝑎 ‘ 𝑤 ) ) |
627 |
626
|
eqeq1d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
628 |
627
|
ralbidv |
⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ) ) |
629 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑎 → ( ( 𝐷 ‘ 𝑦 ) = 0 ↔ ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
630 |
628 629
|
imbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) ) |
631 |
|
eleq2 |
⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( I ↾ 𝑁 ) ) ) |
632 |
631
|
ifbid |
⊢ ( 𝑧 = ( I ↾ 𝑁 ) → if ( 𝑤 ∈ 𝑧 , 1 , 0 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) |
633 |
632
|
eqeq2d |
⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) ) |
634 |
633
|
ralbidv |
⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) ↔ ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) ) ) |
635 |
634
|
imbi1d |
⊢ ( 𝑧 = ( I ↾ 𝑁 ) → ( ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ↔ ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) ) |
636 |
630 635
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝐵 ∧ ( I ↾ 𝑁 ) ∈ ( 𝑁 ↑m 𝑁 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑁 ↑m 𝑁 ) ( ∀ 𝑤 ∈ ∅ ( 𝑦 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑧 , 1 , 0 ) → ( 𝐷 ‘ 𝑦 ) = 0 ) ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
637 |
17 23 625 636
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑤 ∈ ∅ ( 𝑎 ‘ 𝑤 ) = if ( 𝑤 ∈ ( I ↾ 𝑁 ) , 1 , 0 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) ) |
638 |
16 637
|
mpi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑎 ) = 0 ) |
639 |
638
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 ↦ ( 𝐷 ‘ 𝑎 ) ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) ) |
640 |
10
|
feqmptd |
⊢ ( 𝜑 → 𝐷 = ( 𝑎 ∈ 𝐵 ↦ ( 𝐷 ‘ 𝑎 ) ) ) |
641 |
|
fconstmpt |
⊢ ( 𝐵 × { 0 } ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) |
642 |
641
|
a1i |
⊢ ( 𝜑 → ( 𝐵 × { 0 } ) = ( 𝑎 ∈ 𝐵 ↦ 0 ) ) |
643 |
639 640 642
|
3eqtr4d |
⊢ ( 𝜑 → 𝐷 = ( 𝐵 × { 0 } ) ) |