| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetuni.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mdetuni.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mdetuni.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | mdetuni.0g | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | mdetuni.1r | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 6 |  | mdetuni.pg | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 7 |  | mdetuni.tg | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | mdetuni.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 9 |  | mdetuni.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | mdetuni.ff | ⊢ ( 𝜑  →  𝐷 : 𝐵 ⟶ 𝐾 ) | 
						
							| 11 |  | mdetuni.al | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝑦  ≠  𝑧  ∧  ∀ 𝑤  ∈  𝑁 ( 𝑦 𝑥 𝑤 )  =  ( 𝑧 𝑥 𝑤 ) )  →  ( 𝐷 ‘ 𝑥 )  =   0  ) ) | 
						
							| 12 |  | mdetuni.li | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 13 |  | mdetuni.sc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 14 |  | mdetunilem9.id | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 1r ‘ 𝐴 ) )  =   0  ) | 
						
							| 15 |  | mdetunilem9.y | ⊢ 𝑌  =  { 𝑥  ∣  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) } | 
						
							| 16 |  | ral0 | ⊢ ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 18 |  | f1oi | ⊢ (  I   ↾  𝑁 ) : 𝑁 –1-1-onto→ 𝑁 | 
						
							| 19 |  | f1of | ⊢ ( (  I   ↾  𝑁 ) : 𝑁 –1-1-onto→ 𝑁  →  (  I   ↾  𝑁 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 20 | 18 19 | mp1i | ⊢ ( 𝜑  →  (  I   ↾  𝑁 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 21 | 8 8 | elmapd | ⊢ ( 𝜑  →  ( (  I   ↾  𝑁 )  ∈  ( 𝑁  ↑m  𝑁 )  ↔  (  I   ↾  𝑁 ) : 𝑁 ⟶ 𝑁 ) ) | 
						
							| 22 | 20 21 | mpbird | ⊢ ( 𝜑  →  (  I   ↾  𝑁 )  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  I   ↾  𝑁 )  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 24 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 25 | 1 3 2 | matbas2i | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 26 |  | elmapi | ⊢ ( 𝑦  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑦 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑦  ∈  𝐵  →  𝑦 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 28 | 27 | feqmptd | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  =  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝐷 ‘ 𝑦 )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 30 | 24 29 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝐷 ‘ 𝑦 )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑁  ×  𝑁 )  =  ( 𝑁  ×  𝑁 ) | 
						
							| 32 |  | mpteq12 | ⊢ ( ( ( 𝑁  ×  𝑁 )  =  ( 𝑁  ×  𝑁 )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) )  =  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( ( ( 𝑁  ×  𝑁 )  =  ( 𝑁  ×  𝑁 )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 34 | 31 33 | mpan | ⊢ ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑦 ‘ 𝑤 ) ) )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 36 |  | eleq1 | ⊢ ( 𝑎  =  𝑧  →  ( 𝑎  ∈  ( 𝑁  ↑m  𝑁 )  ↔  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝑎  =  𝑧  →  ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ↔  ( 𝜑  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) ) ) | 
						
							| 38 |  | elequ2 | ⊢ ( 𝑎  =  𝑧  →  ( 𝑤  ∈  𝑎  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 39 | 38 | ifbid | ⊢ ( 𝑎  =  𝑧  →  if ( 𝑤  ∈  𝑎 ,   1  ,   0  )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) | 
						
							| 40 | 39 | mpteq2dv | ⊢ ( 𝑎  =  𝑧  →  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) )  =  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( 𝑎  =  𝑧  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) ) )  =  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) ) | 
						
							| 42 | 41 | eqeq1d | ⊢ ( 𝑎  =  𝑧  →  ( ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) ) )  =   0   ↔  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) )  =   0  ) ) | 
						
							| 43 | 37 42 | imbi12d | ⊢ ( 𝑎  =  𝑧  →  ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) ) )  =   0  )  ↔  ( ( 𝜑  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) )  =   0  ) ) ) | 
						
							| 44 |  | eleq1 | ⊢ ( 𝑤  =  〈 𝑏 ,  𝑐 〉  →  ( 𝑤  ∈  𝑎  ↔  〈 𝑏 ,  𝑐 〉  ∈  𝑎 ) ) | 
						
							| 45 | 44 | ifbid | ⊢ ( 𝑤  =  〈 𝑏 ,  𝑐 〉  →  if ( 𝑤  ∈  𝑎 ,   1  ,   0  )  =  if ( 〈 𝑏 ,  𝑐 〉  ∈  𝑎 ,   1  ,   0  ) ) | 
						
							| 46 | 45 | mpompt | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) )  =  ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( 〈 𝑏 ,  𝑐 〉  ∈  𝑎 ,   1  ,   0  ) ) | 
						
							| 47 |  | elmapi | ⊢ ( 𝑎  ∈  ( 𝑁  ↑m  𝑁 )  →  𝑎 : 𝑁 ⟶ 𝑁 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  𝑎 : 𝑁 ⟶ 𝑁 ) | 
						
							| 49 | 48 | ffnd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  𝑎  Fn  𝑁 ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑏  ∈  𝑁  ∧  𝑐  ∈  𝑁 )  →  𝑎  Fn  𝑁 ) | 
						
							| 51 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑏  ∈  𝑁  ∧  𝑐  ∈  𝑁 )  →  𝑏  ∈  𝑁 ) | 
						
							| 52 |  | fnopfvb | ⊢ ( ( 𝑎  Fn  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎 ‘ 𝑏 )  =  𝑐  ↔  〈 𝑏 ,  𝑐 〉  ∈  𝑎 ) ) | 
						
							| 53 | 50 51 52 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑏  ∈  𝑁  ∧  𝑐  ∈  𝑁 )  →  ( ( 𝑎 ‘ 𝑏 )  =  𝑐  ↔  〈 𝑏 ,  𝑐 〉  ∈  𝑎 ) ) | 
						
							| 54 | 53 | bicomd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑏  ∈  𝑁  ∧  𝑐  ∈  𝑁 )  →  ( 〈 𝑏 ,  𝑐 〉  ∈  𝑎  ↔  ( 𝑎 ‘ 𝑏 )  =  𝑐 ) ) | 
						
							| 55 | 54 | ifbid | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑏  ∈  𝑁  ∧  𝑐  ∈  𝑁 )  →  if ( 〈 𝑏 ,  𝑐 〉  ∈  𝑎 ,   1  ,   0  )  =  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) | 
						
							| 56 | 55 | mpoeq3dva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( 〈 𝑏 ,  𝑐 〉  ∈  𝑎 ,   1  ,   0  ) )  =  ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 57 | 46 56 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) )  =  ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) ) )  =  ( 𝐷 ‘ ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mdetunilem8 | ⊢ ( ( 𝜑  ∧  𝑎 : 𝑁 ⟶ 𝑁 )  →  ( 𝐷 ‘ ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 60 | 47 59 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑏  ∈  𝑁 ,  𝑐  ∈  𝑁  ↦  if ( ( 𝑎 ‘ 𝑏 )  =  𝑐 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 61 | 58 60 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑎 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 62 | 43 61 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 63 | 62 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝐷 ‘ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) )  =   0  ) | 
						
							| 65 | 30 35 64 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  ∧  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ) )  →  ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 67 | 66 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 68 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 69 | 8 8 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 70 |  | raleq | ⊢ ( 𝑥  =  ( 𝑁  ×  𝑁 )  →  ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 71 | 70 | imbi1d | ⊢ ( 𝑥  =  ( 𝑁  ×  𝑁 )  →  ( ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 72 | 71 | 2ralbidv | ⊢ ( 𝑥  =  ( 𝑁  ×  𝑁 )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 73 | 72 15 | elab2g | ⊢ ( ( 𝑁  ×  𝑁 )  ∈  Fin  →  ( ( 𝑁  ×  𝑁 )  ∈  𝑌  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 74 | 69 73 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  ×  𝑁 )  ∈  𝑌  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑁  ×  𝑁 ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 75 | 67 74 | mpbird | ⊢ ( 𝜑  →  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) | 
						
							| 76 |  | ssid | ⊢ ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) | 
						
							| 77 | 69 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 78 |  | sseq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ⊆  ( 𝑁  ×  𝑁 )  ↔  ∅  ⊆  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 79 | 78 | 3anbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  ↔  ( 𝜑  ∧  ∅  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 ) ) ) | 
						
							| 80 |  | eleq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ∈  𝑌  ↔  ∅  ∈  𝑌 ) ) | 
						
							| 81 | 80 | notbid | ⊢ ( 𝑎  =  ∅  →  ( ¬  𝑎  ∈  𝑌  ↔  ¬  ∅  ∈  𝑌 ) ) | 
						
							| 82 | 79 81 | imbi12d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑎  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ∅  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ∅  ∈  𝑌 ) ) ) | 
						
							| 83 |  | sseq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ⊆  ( 𝑁  ×  𝑁 )  ↔  𝑏  ⊆  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 84 | 83 | 3anbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  ↔  ( 𝜑  ∧  𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 ) ) ) | 
						
							| 85 |  | eleq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∈  𝑌  ↔  𝑏  ∈  𝑌 ) ) | 
						
							| 86 | 85 | notbid | ⊢ ( 𝑎  =  𝑏  →  ( ¬  𝑎  ∈  𝑌  ↔  ¬  𝑏  ∈  𝑌 ) ) | 
						
							| 87 | 84 86 | imbi12d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑎  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑏  ∈  𝑌 ) ) ) | 
						
							| 88 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑎  ⊆  ( 𝑁  ×  𝑁 )  ↔  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 89 | 88 | 3anbi2d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  ↔  ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 ) ) ) | 
						
							| 90 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑎  ∈  𝑌  ↔  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) | 
						
							| 91 | 90 | notbid | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ¬  𝑎  ∈  𝑌  ↔  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) | 
						
							| 92 | 89 91 | imbi12d | ⊢ ( 𝑎  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑎  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) ) | 
						
							| 93 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑁  ×  𝑁 )  →  ( 𝑎  ⊆  ( 𝑁  ×  𝑁 )  ↔  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 94 | 93 | 3anbi2d | ⊢ ( 𝑎  =  ( 𝑁  ×  𝑁 )  →  ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  ↔  ( 𝜑  ∧  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 ) ) ) | 
						
							| 95 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝑁  ×  𝑁 )  →  ( 𝑎  ∈  𝑌  ↔  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) | 
						
							| 96 | 95 | notbid | ⊢ ( 𝑎  =  ( 𝑁  ×  𝑁 )  →  ( ¬  𝑎  ∈  𝑌  ↔  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) | 
						
							| 97 | 94 96 | imbi12d | ⊢ ( 𝑎  =  ( 𝑁  ×  𝑁 )  →  ( ( ( 𝜑  ∧  𝑎  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑎  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) ) | 
						
							| 98 |  | simp3 | ⊢ ( ( 𝜑  ∧  ∅  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ∅  ∈  𝑌 ) | 
						
							| 99 |  | ssun1 | ⊢ 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } ) | 
						
							| 100 |  | sstr2 | ⊢ ( 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } )  →  ( ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  →  𝑏  ⊆  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 101 | 99 100 | ax-mp | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  →  𝑏  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 102 | 101 | 3anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ( 𝜑  ∧  𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 ) ) | 
						
							| 103 | 102 | imim1i | ⊢ ( ( ( 𝜑  ∧  𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑏  ∈  𝑌 )  →  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑏  ∈  𝑌 ) ) | 
						
							| 104 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝜑 ) | 
						
							| 105 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 106 |  | simprll | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 107 | 1 3 2 | matbas2i | ⊢ ( 𝑎  ∈  𝐵  →  𝑎  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 108 |  | elmapi | ⊢ ( 𝑎  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑎 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 109 | 107 108 | syl | ⊢ ( 𝑎  ∈  𝐵  →  𝑎 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 110 | 109 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑎 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 111 | 110 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑎  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 112 | 111 | reseq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) | 
						
							| 113 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 114 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 115 | 113 114 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  𝑅  ∈  Grp ) | 
						
							| 117 | 110 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  𝑎 : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 118 |  | simp2 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 119 | 118 | unssbd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  { 𝑐 }  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 120 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 121 | 120 | snss | ⊢ ( 𝑐  ∈  ( 𝑁  ×  𝑁 )  ↔  { 𝑐 }  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 122 | 119 121 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑐  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 123 |  | xp1st | ⊢ ( 𝑐  ∈  ( 𝑁  ×  𝑁 )  →  ( 1st  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 1st  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 125 | 124 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  { ( 1st  ‘ 𝑐 ) }  ⊆  𝑁 ) | 
						
							| 126 |  | xpss1 | ⊢ ( { ( 1st  ‘ 𝑐 ) }  ⊆  𝑁  →  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 127 | 125 126 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 128 | 127 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  𝑒  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 129 | 117 128 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 𝑎 ‘ 𝑒 )  ∈  𝐾 ) | 
						
							| 130 | 3 5 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  𝐾 ) | 
						
							| 131 | 113 130 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →   1   ∈  𝐾 ) | 
						
							| 132 | 3 4 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐾 ) | 
						
							| 133 | 113 132 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →   0   ∈  𝐾 ) | 
						
							| 134 | 131 133 | ifcld | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 136 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 137 | 3 6 136 | grpnpcan | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑎 ‘ 𝑒 )  ∈  𝐾  ∧  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 )  →  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 138 | 116 129 135 137 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 139 | 138 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 𝑎 ‘ 𝑒 )  =  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( 𝑎 ‘ 𝑒 )  =  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 141 |  | iftrue | ⊢ ( 𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 142 |  | iftrue | ⊢ ( 𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 143 | 141 142 | oveq12d | ⊢ ( 𝑒  =  𝑐  →  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  +  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 145 | 140 144 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( 𝑎 ‘ 𝑒 )  =  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 146 | 3 6 4 | grplid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑎 ‘ 𝑒 )  ∈  𝐾 )  →  (  0   +  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 147 | 116 129 146 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  (  0   +  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 148 | 147 | eqcomd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 𝑎 ‘ 𝑒 )  =  (  0   +  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  ( 𝑎 ‘ 𝑒 )  =  (  0   +  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 150 |  | iffalse | ⊢ ( ¬  𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =   0  ) | 
						
							| 151 |  | iffalse | ⊢ ( ¬  𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 152 | 150 151 | oveq12d | ⊢ ( ¬  𝑒  =  𝑐  →  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  (  0   +  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 153 | 152 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  (  0   +  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 154 | 149 153 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  ( 𝑎 ‘ 𝑒 )  =  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 155 | 145 154 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 𝑎 ‘ 𝑒 )  =  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 156 | 155 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 157 |  | snfi | ⊢ { ( 1st  ‘ 𝑐 ) }  ∈  Fin | 
						
							| 158 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 159 |  | xpfi | ⊢ ( ( { ( 1st  ‘ 𝑐 ) }  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ∈  Fin ) | 
						
							| 160 | 157 158 159 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ∈  Fin ) | 
						
							| 161 |  | ovex | ⊢ ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  ∈  V | 
						
							| 162 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 163 | 161 162 | ifex | ⊢ if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  ∈  V | 
						
							| 164 | 163 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  ∈  V ) | 
						
							| 165 | 5 | fvexi | ⊢  1   ∈  V | 
						
							| 166 | 165 162 | ifex | ⊢ if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  V | 
						
							| 167 |  | fvex | ⊢ ( 𝑎 ‘ 𝑒 )  ∈  V | 
						
							| 168 | 166 167 | ifex | ⊢ if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  V | 
						
							| 169 | 168 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  V ) | 
						
							| 170 |  | xp1st | ⊢ ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  →  ( 1st  ‘ 𝑒 )  ∈  { ( 1st  ‘ 𝑐 ) } ) | 
						
							| 171 |  | elsni | ⊢ ( ( 1st  ‘ 𝑒 )  ∈  { ( 1st  ‘ 𝑐 ) }  →  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 172 |  | iftrue | ⊢ ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ) | 
						
							| 173 | 170 171 172 | 3syl | ⊢ ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ) | 
						
							| 174 | 173 | mpteq2ia | ⊢ ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ) | 
						
							| 175 | 174 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ) ) | 
						
							| 176 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 177 | 160 164 169 175 176 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∘f   +  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  +  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 178 | 156 177 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  =  ( ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∘f   +  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 179 | 127 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 180 | 127 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 181 | 127 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 182 | 180 181 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  =  ( ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∘f   +  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 183 | 178 179 182 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) | 
						
							| 184 | 112 183 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) | 
						
							| 185 | 111 | reseq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 186 |  | xp1st | ⊢ ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  →  ( 1st  ‘ 𝑒 )  ∈  ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } ) ) | 
						
							| 187 |  | eldifsni | ⊢ ( ( 1st  ‘ 𝑒 )  ∈  ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  →  ( 1st  ‘ 𝑒 )  ≠  ( 1st  ‘ 𝑐 ) ) | 
						
							| 188 | 186 187 | syl | ⊢ ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  →  ( 1st  ‘ 𝑒 )  ≠  ( 1st  ‘ 𝑐 ) ) | 
						
							| 189 | 188 | neneqd | ⊢ ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  →  ¬  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 190 | 189 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  →  ¬  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 191 | 190 | iffalsed | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 192 | 191 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 193 |  | difss | ⊢ ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ⊆  𝑁 | 
						
							| 194 |  | xpss1 | ⊢ ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ⊆  𝑁  →  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 195 | 193 194 | ax-mp | ⊢ ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 ) | 
						
							| 196 |  | resmpt | ⊢ ( ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 197 | 195 196 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 198 |  | resmpt | ⊢ ( ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 199 | 195 198 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 200 | 192 197 199 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 201 | 185 200 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 202 |  | fveq2 | ⊢ ( 𝑒  =  𝑐  →  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 203 | 190 202 | nsyl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  →  ¬  𝑒  =  𝑐 ) | 
						
							| 204 | 203 | iffalsed | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 205 | 204 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 206 |  | resmpt | ⊢ ( ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 207 | 195 206 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 208 | 205 207 199 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  ( 𝑎 ‘ 𝑒 ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 209 | 185 208 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 210 | 134 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 211 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  ( 𝑎 ‘ 𝑒 )  ∈  𝐾 ) | 
						
							| 212 | 210 211 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  𝐾 ) | 
						
							| 213 | 212 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 214 | 3 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 215 | 68 | anidms | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 216 | 158 215 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 217 |  | elmapg | ⊢ ( ( 𝐾  ∈  V  ∧  ( 𝑁  ×  𝑁 )  ∈  Fin )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 218 | 214 216 217 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 219 | 213 218 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 220 | 1 3 | matbas2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 221 | 158 113 220 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 222 | 221 2 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  =  𝐵 ) | 
						
							| 223 | 219 222 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 ) | 
						
							| 224 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 225 | 115 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  𝑅  ∈  Grp ) | 
						
							| 226 | 3 136 | grpsubcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑎 ‘ 𝑒 )  ∈  𝐾  ∧  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 )  →  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 ) | 
						
							| 227 | 225 211 210 226 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 ) | 
						
							| 228 | 133 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →   0   ∈  𝐾 ) | 
						
							| 229 | 227 228 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  ∈  𝐾 ) | 
						
							| 230 | 229 211 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  𝐾 ) | 
						
							| 231 | 230 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 232 |  | elmapg | ⊢ ( ( 𝐾  ∈  V  ∧  ( 𝑁  ×  𝑁 )  ∈  Fin )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 233 | 214 216 232 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 234 | 231 233 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 235 | 234 222 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 ) | 
						
							| 236 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 237 |  | reseq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) | 
						
							| 238 | 237 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 239 |  | reseq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) | 
						
							| 240 | 239 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 241 | 239 | eqeq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 242 | 238 240 241 | 3anbi123d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 243 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 244 | 242 243 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 245 | 244 | 2ralbidv | ⊢ ( 𝑥  =  𝑎  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 246 |  | reseq1 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) | 
						
							| 247 | 246 | oveq1d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) | 
						
							| 248 | 247 | eqeq2d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 249 |  | reseq1 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) | 
						
							| 250 | 249 | eqeq2d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 251 | 248 250 | 3anbi12d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 252 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝐷 ‘ 𝑦 )  =  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 253 | 252 | oveq1d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) | 
						
							| 254 | 253 | eqeq2d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 255 | 251 254 | imbi12d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 256 | 255 | 2ralbidv | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 257 | 245 256 | rspc2va | ⊢ ( ( ( 𝑎  ∈  𝐵  ∧  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑦  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑦  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( ( 𝐷 ‘ 𝑦 )  +  ( 𝐷 ‘ 𝑧 ) ) ) )  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 258 | 224 235 236 257 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 259 |  | reseq1 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) | 
						
							| 260 | 259 | oveq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) | 
						
							| 261 | 260 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 262 |  | reseq1 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) | 
						
							| 263 | 262 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 264 | 261 263 | 3anbi13d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 265 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝐷 ‘ 𝑧 )  =  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 266 | 265 | oveq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 267 | 266 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 268 | 264 267 | imbi12d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) | 
						
							| 269 |  | sneq | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  { 𝑤 }  =  { ( 1st  ‘ 𝑐 ) } ) | 
						
							| 270 | 269 | xpeq1d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( { 𝑤 }  ×  𝑁 )  =  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) | 
						
							| 271 | 270 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) | 
						
							| 272 | 270 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) | 
						
							| 273 | 270 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) | 
						
							| 274 | 272 273 | oveq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) | 
						
							| 275 | 271 274 | eqeq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) ) | 
						
							| 276 | 269 | difeq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( 𝑁  ∖  { 𝑤 } )  =  ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } ) ) | 
						
							| 277 | 276 | xpeq1d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 )  =  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) | 
						
							| 278 | 277 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 279 | 277 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 280 | 278 279 | eqeq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) ) | 
						
							| 281 | 277 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 282 | 278 281 | eqeq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) ) | 
						
							| 283 | 275 280 282 | 3anbi123d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) ) ) | 
						
							| 284 | 283 | imbi1d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) )  ↔  ( ( ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) | 
						
							| 285 | 268 284 | rspc2va | ⊢ ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵  ∧  ( 1st  ‘ 𝑐 )  ∈  𝑁 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑎  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  ∘f   +  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ 𝑧 ) ) ) )  →  ( ( ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 286 | 223 124 258 285 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑎  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∘f   +  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  ∧  ( 𝑎  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 287 | 184 201 209 286 | mp3and | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 288 | 104 105 106 287 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 289 |  | fveq2 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑎 ‘ 𝑒 )  =  ( 𝑎 ‘ 𝑐 ) ) | 
						
							| 290 |  | elequ1 | ⊢ ( 𝑒  =  𝑐  →  ( 𝑒  ∈  𝑑  ↔  𝑐  ∈  𝑑 ) ) | 
						
							| 291 | 290 | ifbid | ⊢ ( 𝑒  =  𝑐  →  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 292 | 289 291 | oveq12d | ⊢ ( 𝑒  =  𝑐  →  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 293 | 292 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 294 | 110 122 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎 ‘ 𝑐 )  ∈  𝐾 ) | 
						
							| 295 | 131 133 | ifcld | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  if ( 𝑐  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 296 | 3 136 | grpsubcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑎 ‘ 𝑐 )  ∈  𝐾  ∧  if ( 𝑐  ∈  𝑑 ,   1  ,   0  )  ∈  𝐾 )  →  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 ) | 
						
							| 297 | 115 294 295 296 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 ) | 
						
							| 298 | 3 7 5 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  )  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 299 | 113 297 298 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  )  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 300 | 299 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  )  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 301 | 293 300 | eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  ) ) | 
						
							| 302 | 141 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 303 |  | iftrue | ⊢ ( 𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,   1  ,   0  )  =   1  ) | 
						
							| 304 | 303 | oveq2d | ⊢ ( 𝑒  =  𝑐  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  ) ) | 
						
							| 305 | 304 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   1  ) ) | 
						
							| 306 | 301 302 305 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  𝑒  =  𝑐 )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 307 | 3 7 4 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  =   0  ) | 
						
							| 308 | 113 297 307 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  =   0  ) | 
						
							| 309 | 308 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →   0   =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  ) ) | 
						
							| 310 | 309 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →   0   =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  ) ) | 
						
							| 311 | 150 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =   0  ) | 
						
							| 312 |  | iffalse | ⊢ ( ¬  𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,   1  ,   0  )  =   0  ) | 
						
							| 313 | 312 | oveq2d | ⊢ ( ¬  𝑒  =  𝑐  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  ) ) | 
						
							| 314 | 313 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  ) ) | 
						
							| 315 | 310 311 314 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  ∧  ¬  𝑒  =  𝑐 )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 316 | 306 315 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 317 | 170 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 1st  ‘ 𝑒 )  ∈  { ( 1st  ‘ 𝑐 ) } ) | 
						
							| 318 | 317 171 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 319 | 318 | iftrued | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ) | 
						
							| 320 | 318 | iftrued | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ) | 
						
							| 321 | 320 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ) ) | 
						
							| 322 | 316 319 321 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 323 | 322 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 324 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  V ) | 
						
							| 325 | 165 162 | ifex | ⊢ if ( 𝑒  =  𝑐 ,   1  ,   0  )  ∈  V | 
						
							| 326 | 325 167 | ifex | ⊢ if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  V | 
						
							| 327 | 326 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  V ) | 
						
							| 328 |  | fconstmpt | ⊢ ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 329 | 328 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) ) | 
						
							| 330 | 127 | resmptd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 331 | 160 324 327 329 330 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  =  ( 𝑒  ∈  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ↦  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 332 | 323 180 331 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) | 
						
							| 333 |  | iffalse | ⊢ ( ¬  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 334 |  | iffalse | ⊢ ( ¬  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  ( 𝑎 ‘ 𝑒 ) ) | 
						
							| 335 | 333 334 | eqtr4d | ⊢ ( ¬  ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 336 | 190 335 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 337 | 336 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 338 |  | resmpt | ⊢ ( ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 339 | 195 338 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( 𝑒  ∈  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) | 
						
							| 340 | 337 197 339 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 341 | 131 133 | ifcld | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  if ( 𝑒  =  𝑐 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 342 | 341 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( 𝑒  =  𝑐 ,   1  ,   0  )  ∈  𝐾 ) | 
						
							| 343 | 342 211 | ifcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑒  ∈  ( 𝑁  ×  𝑁 ) )  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  ∈  𝐾 ) | 
						
							| 344 | 343 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) | 
						
							| 345 |  | elmapg | ⊢ ( ( 𝐾  ∈  V  ∧  ( 𝑁  ×  𝑁 )  ∈  Fin )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 346 | 214 216 345 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) )  ↔  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) : ( 𝑁  ×  𝑁 ) ⟶ 𝐾 ) ) | 
						
							| 347 | 344 346 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  ( 𝐾  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 348 | 347 222 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 ) | 
						
							| 349 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 350 |  | reseq1 | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) | 
						
							| 351 | 350 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 352 |  | reseq1 | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) | 
						
							| 353 | 352 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 354 | 351 353 | anbi12d | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 355 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 356 | 354 355 | imbi12d | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 357 | 356 | 2ralbidv | ⊢ ( 𝑥  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 358 |  | sneq | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  { 𝑦 }  =  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } ) | 
						
							| 359 | 358 | xpeq2d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  =  ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } ) ) | 
						
							| 360 | 359 | oveq1d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) | 
						
							| 361 | 360 | eqeq2d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 362 | 361 | anbi1d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 363 |  | oveq1 | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) | 
						
							| 364 | 363 | eqeq2d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 365 | 362 364 | imbi12d | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 366 | 365 | 2ralbidv | ⊢ ( 𝑦  =  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) ) | 
						
							| 367 | 357 366 | rspc2va | ⊢ ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵  ∧  ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ∈  𝐾 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐾 ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( 𝑥  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { 𝑦 } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( 𝑥  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝑦  ·  ( 𝐷 ‘ 𝑧 ) ) ) )  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 368 | 235 297 349 367 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) ) | 
						
							| 369 |  | reseq1 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) | 
						
							| 370 | 369 | oveq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) | 
						
							| 371 | 370 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) ) ) ) | 
						
							| 372 |  | reseq1 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) | 
						
							| 373 | 372 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) | 
						
							| 374 | 371 373 | anbi12d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) ) ) ) | 
						
							| 375 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝐷 ‘ 𝑧 )  =  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) | 
						
							| 376 | 375 | oveq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 377 | 376 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) )  ↔  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 378 | 374 377 | imbi12d | ⊢ ( 𝑧  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) )  ↔  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) | 
						
							| 379 | 270 | xpeq1d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  =  ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } ) ) | 
						
							| 380 | 270 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) | 
						
							| 381 | 379 380 | oveq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) | 
						
							| 382 | 272 381 | eqeq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) ) ) ) | 
						
							| 383 | 277 | reseq2d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) | 
						
							| 384 | 279 383 | eqeq12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) ) | 
						
							| 385 | 382 384 | anbi12d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  ↔  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) ) ) ) | 
						
							| 386 | 385 | imbi1d | ⊢ ( 𝑤  =  ( 1st  ‘ 𝑐 )  →  ( ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) )  ↔  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) ) | 
						
							| 387 | 378 386 | rspc2va | ⊢ ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵  ∧  ( 1st  ‘ 𝑐 )  ∈  𝑁 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝑁 ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { 𝑤 }  ×  𝑁 ) )  =  ( ( ( { 𝑤 }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( 𝑧  ↾  ( { 𝑤 }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) )  =  ( 𝑧  ↾  ( ( 𝑁  ∖  { 𝑤 } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ 𝑧 ) ) ) )  →  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 388 | 348 124 368 387 | syl21anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) )  =  ( ( ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 )  ×  { ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) } )  ∘f   ·  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( { ( 1st  ‘ 𝑐 ) }  ×  𝑁 ) ) )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ↾  ( ( 𝑁  ∖  { ( 1st  ‘ 𝑐 ) } )  ×  𝑁 ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) ) | 
						
							| 389 | 332 340 388 | mp2and | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 390 | 389 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 391 | 104 105 106 390 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,  ( ( 𝑎 ‘ 𝑒 ) ( -g ‘ 𝑅 ) if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ) ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) ) ) | 
						
							| 392 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) | 
						
							| 393 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 394 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 395 |  | ralss | ⊢ ( 𝑏  ⊆  ( 𝑏  ∪  { 𝑐 } )  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) ) | 
						
							| 396 | 99 395 | ax-mp | ⊢ ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 397 |  | iftrue | ⊢ ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ) | 
						
							| 398 | 397 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ) | 
						
							| 399 |  | ibar | ⊢ ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ( ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 )  ↔  ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  ∧  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) ) ) ) | 
						
							| 400 | 399 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 )  ↔  ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  ∧  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) ) ) ) | 
						
							| 401 |  | relxp | ⊢ Rel  ( 𝑁  ×  𝑁 ) | 
						
							| 402 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 403 | 402 | sselda | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  →  𝑤  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 404 | 403 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  𝑤  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 405 |  | 1st2nd | ⊢ ( ( Rel  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  ( 𝑁  ×  𝑁 ) )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 406 | 401 404 405 | sylancr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 407 | 406 | eleq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 408 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 409 |  | elmapi | ⊢ ( 𝑑  ∈  ( 𝑁  ↑m  𝑁 )  →  𝑑 : 𝑁 ⟶ 𝑁 ) | 
						
							| 410 | 409 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  𝑑 : 𝑁 ⟶ 𝑁 ) | 
						
							| 411 | 124 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 1st  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 412 |  | xp2nd | ⊢ ( 𝑐  ∈  ( 𝑁  ×  𝑁 )  →  ( 2nd  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 413 | 122 412 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( 2nd  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 414 | 413 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 2nd  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 415 |  | fsets | ⊢ ( ( ( 𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  𝑑 : 𝑁 ⟶ 𝑁 )  ∧  ( 1st  ‘ 𝑐 )  ∈  𝑁  ∧  ( 2nd  ‘ 𝑐 )  ∈  𝑁 )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 416 | 408 410 411 414 415 | syl211anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 417 | 416 | ffnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  Fn  𝑁 ) | 
						
							| 418 | 417 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  Fn  𝑁 ) | 
						
							| 419 |  | xp1st | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( 1st  ‘ 𝑤 )  ∈  𝑁 ) | 
						
							| 420 | 403 419 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  →  ( 1st  ‘ 𝑤 )  ∈  𝑁 ) | 
						
							| 421 | 420 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 1st  ‘ 𝑤 )  ∈  𝑁 ) | 
						
							| 422 |  | fnopfvb | ⊢ ( ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  Fn  𝑁  ∧  ( 1st  ‘ 𝑤 )  ∈  𝑁 )  →  ( ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( 2nd  ‘ 𝑤 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 423 | 418 421 422 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( 2nd  ‘ 𝑤 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 424 |  | fveq2 | ⊢ ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑐 ) ) ) | 
						
							| 425 | 424 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑐 ) ) ) | 
						
							| 426 |  | vex | ⊢ 𝑑  ∈  V | 
						
							| 427 |  | fvex | ⊢ ( 1st  ‘ 𝑐 )  ∈  V | 
						
							| 428 |  | fvex | ⊢ ( 2nd  ‘ 𝑐 )  ∈  V | 
						
							| 429 |  | fvsetsid | ⊢ ( ( 𝑑  ∈  V  ∧  ( 1st  ‘ 𝑐 )  ∈  V  ∧  ( 2nd  ‘ 𝑐 )  ∈  V )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑐 ) )  =  ( 2nd  ‘ 𝑐 ) ) | 
						
							| 430 | 426 427 428 429 | mp3an | ⊢ ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑐 ) )  =  ( 2nd  ‘ 𝑐 ) | 
						
							| 431 | 425 430 | eqtrdi | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( 2nd  ‘ 𝑐 ) ) | 
						
							| 432 | 431 | eqeq1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑐 )  =  ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 433 |  | eqcom | ⊢ ( ( 2nd  ‘ 𝑐 )  =  ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) ) | 
						
							| 434 | 432 433 | bitrdi | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ‘ ( 1st  ‘ 𝑤 ) )  =  ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) ) ) | 
						
							| 435 | 407 423 434 | 3bitr2rd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 )  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 436 | 122 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  𝑐  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 437 |  | xpopth | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  𝑐  ∈  ( 𝑁  ×  𝑁 ) )  →  ( ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  ∧  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) )  ↔  𝑤  =  𝑐 ) ) | 
						
							| 438 | 404 436 437 | syl2anc | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  ∧  ( 2nd  ‘ 𝑤 )  =  ( 2nd  ‘ 𝑐 ) )  ↔  𝑤  =  𝑐 ) ) | 
						
							| 439 | 400 435 438 | 3bitr3rd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 𝑤  =  𝑐  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 440 | 439 | ifbid | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( 𝑤  =  𝑐 ,   1  ,   0  )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 441 | 398 440 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 442 | 441 | a1d | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 443 |  | elsni | ⊢ ( 𝑤  ∈  { 𝑐 }  →  𝑤  =  𝑐 ) | 
						
							| 444 | 443 | fveq2d | ⊢ ( 𝑤  ∈  { 𝑐 }  →  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ) | 
						
							| 445 | 444 | con3i | ⊢ ( ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ¬  𝑤  ∈  { 𝑐 } ) | 
						
							| 446 | 445 | adantl | ⊢ ( ( 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ¬  𝑤  ∈  { 𝑐 } ) | 
						
							| 447 |  | elun | ⊢ ( 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } )  ↔  ( 𝑤  ∈  𝑏  ∨  𝑤  ∈  { 𝑐 } ) ) | 
						
							| 448 | 447 | biimpi | ⊢ ( 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } )  →  ( 𝑤  ∈  𝑏  ∨  𝑤  ∈  { 𝑐 } ) ) | 
						
							| 449 | 448 | adantr | ⊢ ( ( 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 𝑤  ∈  𝑏  ∨  𝑤  ∈  { 𝑐 } ) ) | 
						
							| 450 |  | orel2 | ⊢ ( ¬  𝑤  ∈  { 𝑐 }  →  ( ( 𝑤  ∈  𝑏  ∨  𝑤  ∈  { 𝑐 } )  →  𝑤  ∈  𝑏 ) ) | 
						
							| 451 | 446 449 450 | sylc | ⊢ ( ( 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  𝑤  ∈  𝑏 ) | 
						
							| 452 | 451 | adantll | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  𝑤  ∈  𝑏 ) | 
						
							| 453 |  | iffalse | ⊢ ( ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 454 | 453 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 455 |  | setsres | ⊢ ( 𝑑  ∈  V  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  =  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) ) ) | 
						
							| 456 | 455 | eleq2d | ⊢ ( 𝑑  ∈  V  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) ) ) ) | 
						
							| 457 | 426 456 | mp1i | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) ) ) ) | 
						
							| 458 |  | fvex | ⊢ ( 1st  ‘ 𝑤 )  ∈  V | 
						
							| 459 | 458 | a1i | ⊢ ( ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ( 1st  ‘ 𝑤 )  ∈  V ) | 
						
							| 460 |  | neqne | ⊢ ( ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ( 1st  ‘ 𝑤 )  ≠  ( 1st  ‘ 𝑐 ) ) | 
						
							| 461 |  | eldifsn | ⊢ ( ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } )  ↔  ( ( 1st  ‘ 𝑤 )  ∈  V  ∧  ( 1st  ‘ 𝑤 )  ≠  ( 1st  ‘ 𝑐 ) ) ) | 
						
							| 462 | 459 460 461 | sylanbrc | ⊢ ( ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 )  →  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) ) | 
						
							| 463 |  | fvex | ⊢ ( 2nd  ‘ 𝑤 )  ∈  V | 
						
							| 464 | 463 | opres | ⊢ ( ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 465 | 464 | adantl | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 466 |  | 1st2nd2 | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 467 | 466 | eleq1d | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 468 | 467 | adantr | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 469 | 465 468 | bitr4d | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 470 | 403 462 469 | syl2an | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 471 | 463 | opres | ⊢ ( ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  𝑑 ) ) | 
						
							| 472 | 471 | adantl | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  𝑑 ) ) | 
						
							| 473 | 466 | eleq1d | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( 𝑤  ∈  𝑑  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  𝑑 ) ) | 
						
							| 474 | 473 | adantr | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 𝑤  ∈  𝑑  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  𝑑 ) ) | 
						
							| 475 | 472 474 | bitr4d | ⊢ ( ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  ∧  ( 1st  ‘ 𝑤 )  ∈  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  𝑤  ∈  𝑑 ) ) | 
						
							| 476 | 403 462 475 | syl2an | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( 𝑑  ↾  ( V  ∖  { ( 1st  ‘ 𝑐 ) } ) )  ↔  𝑤  ∈  𝑑 ) ) | 
						
							| 477 | 457 470 476 | 3bitr3rd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( 𝑤  ∈  𝑑  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 478 | 477 | ifbid | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 479 | 454 478 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 480 |  | ifeq2 | ⊢ ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 481 | 480 | eqeq1d | ⊢ ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  ↔  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 482 | 479 481 | syl5ibrcom | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 483 | 452 482 | embantd | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  ∧  ¬  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) )  →  ( ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 484 | 442 483 | pm2.61dan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  →  ( ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 485 |  | fveqeq2 | ⊢ ( 𝑒  =  𝑤  →  ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 )  ↔  ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ) ) | 
						
							| 486 |  | equequ1 | ⊢ ( 𝑒  =  𝑤  →  ( 𝑒  =  𝑐  ↔  𝑤  =  𝑐 ) ) | 
						
							| 487 | 486 | ifbid | ⊢ ( 𝑒  =  𝑤  →  if ( 𝑒  =  𝑐 ,   1  ,   0  )  =  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ) | 
						
							| 488 |  | fveq2 | ⊢ ( 𝑒  =  𝑤  →  ( 𝑎 ‘ 𝑒 )  =  ( 𝑎 ‘ 𝑤 ) ) | 
						
							| 489 | 485 487 488 | ifbieq12d | ⊢ ( 𝑒  =  𝑤  →  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) ) ) | 
						
							| 490 |  | eqid | ⊢ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 491 | 165 162 | ifex | ⊢ if ( 𝑤  =  𝑐 ,   1  ,   0  )  ∈  V | 
						
							| 492 |  | fvex | ⊢ ( 𝑎 ‘ 𝑤 )  ∈  V | 
						
							| 493 | 491 492 | ifex | ⊢ if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  ∈  V | 
						
							| 494 | 489 490 493 | fvmpt | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) ) ) | 
						
							| 495 | 494 | eqeq1d | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  ↔  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 496 | 403 495 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  ↔  if ( ( 1st  ‘ 𝑤 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑤  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 497 | 484 496 | sylibrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) )  →  ( ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 498 | 497 | ralimdva | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑤  ∈  𝑏  →  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 499 | 396 498 | biimtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 500 | 499 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 501 | 500 | 3adantr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 502 | 348 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 ) | 
						
							| 503 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 504 | 503 409 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝑑 : 𝑁 ⟶ 𝑁 ) | 
						
							| 505 | 124 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 1st  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 506 | 413 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 2nd  ‘ 𝑐 )  ∈  𝑁 ) | 
						
							| 507 | 503 504 505 506 415 | syl211anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) | 
						
							| 508 | 158 158 | elmapd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ∈  ( 𝑁  ↑m  𝑁 )  ↔  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) | 
						
							| 509 | 508 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ∈  ( 𝑁  ↑m  𝑁 )  ↔  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) : 𝑁 ⟶ 𝑁 ) ) | 
						
							| 510 | 507 509 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ∈  ( 𝑁  ↑m  𝑁 ) ) | 
						
							| 511 |  | simpr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) | 
						
							| 512 |  | raleq | ⊢ ( 𝑥  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 513 | 512 | imbi1d | ⊢ ( 𝑥  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 514 | 513 | 2ralbidv | ⊢ ( 𝑥  =  ( 𝑏  ∪  { 𝑐 } )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 515 | 514 15 | elab2g | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  →  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 516 | 515 | ibi | ⊢ ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 517 | 511 516 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 518 |  | fveq1 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑦 ‘ 𝑤 )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) | 
						
							| 519 | 518 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 520 | 519 | ralbidv | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 521 |  | fveqeq2 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑦 )  =   0   ↔  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 522 | 520 521 | imbi12d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) ) | 
						
							| 523 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ) ) | 
						
							| 524 | 523 | ifbid | ⊢ ( 𝑧  =  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  →  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) | 
						
							| 525 | 524 | eqeq2d | ⊢ ( 𝑧  =  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 526 | 525 | ralbidv | ⊢ ( 𝑧  =  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  ) ) ) | 
						
							| 527 | 526 | imbi1d | ⊢ ( 𝑧  =  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  →  ( ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) ) | 
						
							| 528 | 522 527 | rspc2va | ⊢ ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵  ∧  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 )  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 529 | 502 510 517 528 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  ( 𝑑  sSet  〈 ( 1st  ‘ 𝑐 ) ,  ( 2nd  ‘ 𝑐 ) 〉 ) ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 530 | 501 529 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) | 
						
							| 531 | 530 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =  ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  ) ) | 
						
							| 532 | 118 | unssad | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  𝑏  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 533 | 532 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  𝑏  ⊆  ( 𝑁  ×  𝑁 ) ) | 
						
							| 534 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 535 |  | ssel2 | ⊢ ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  →  𝑤  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 536 | 535 | adantr | ⊢ ( ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  ∧  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  𝑤  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 537 |  | elequ1 | ⊢ ( 𝑒  =  𝑤  →  ( 𝑒  ∈  𝑑  ↔  𝑤  ∈  𝑑 ) ) | 
						
							| 538 | 537 | ifbid | ⊢ ( 𝑒  =  𝑤  →  if ( 𝑒  ∈  𝑑 ,   1  ,   0  )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 539 | 486 538 488 | ifbieq12d | ⊢ ( 𝑒  =  𝑤  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) ) ) | 
						
							| 540 |  | eqid | ⊢ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) | 
						
							| 541 | 165 162 | ifex | ⊢ if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ∈  V | 
						
							| 542 | 541 492 | ifex | ⊢ if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  ∈  V | 
						
							| 543 | 539 540 542 | fvmpt | ⊢ ( 𝑤  ∈  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) ) ) | 
						
							| 544 | 536 543 | syl | ⊢ ( ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  ∧  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) ) ) | 
						
							| 545 |  | ifeq2 | ⊢ ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 546 | 545 | adantl | ⊢ ( ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  ∧  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 547 |  | ifid | ⊢ if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) | 
						
							| 548 | 546 547 | eqtrdi | ⊢ ( ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  ∧  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  if ( 𝑤  =  𝑐 ,  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑤 ) )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 549 | 544 548 | eqtrd | ⊢ ( ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  ∧  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 550 | 549 | ex | ⊢ ( ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑤  ∈  𝑏 )  →  ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 551 | 550 | ralimdva | ⊢ ( 𝑏  ⊆  ( 𝑁  ×  𝑁 )  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ∀ 𝑤  ∈  𝑏 ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 552 | 533 534 551 | sylc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  𝑏 ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 553 | 142 291 | eqtrd | ⊢ ( 𝑒  =  𝑐  →  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 554 | 165 162 | ifex | ⊢ if ( 𝑐  ∈  𝑑 ,   1  ,   0  )  ∈  V | 
						
							| 555 | 553 540 554 | fvmpt | ⊢ ( 𝑐  ∈  ( 𝑁  ×  𝑁 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 556 | 122 555 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 557 | 556 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 558 |  | fveq2 | ⊢ ( 𝑤  =  𝑐  →  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 ) ) | 
						
							| 559 |  | elequ1 | ⊢ ( 𝑤  =  𝑐  →  ( 𝑤  ∈  𝑑  ↔  𝑐  ∈  𝑑 ) ) | 
						
							| 560 | 559 | ifbid | ⊢ ( 𝑤  =  𝑐  →  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 561 | 558 560 | eqeq12d | ⊢ ( 𝑤  =  𝑐  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 562 | 561 | ralunsn | ⊢ ( 𝑐  ∈  V  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ( ∀ 𝑤  ∈  𝑏 ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) ) | 
						
							| 563 | 562 | elv | ⊢ ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ( ∀ 𝑤  ∈  𝑏 ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ∧  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 564 | 552 557 563 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 565 | 223 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵 ) | 
						
							| 566 |  | fveq1 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( 𝑦 ‘ 𝑤 )  =  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 ) ) | 
						
							| 567 | 566 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 568 | 567 | ralbidv | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 569 |  | fveqeq2 | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( 𝐷 ‘ 𝑦 )  =   0   ↔  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 570 | 568 569 | imbi12d | ⊢ ( 𝑦  =  ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  →  ( ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) ) | 
						
							| 571 |  | elequ2 | ⊢ ( 𝑧  =  𝑑  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  𝑑 ) ) | 
						
							| 572 | 571 | ifbid | ⊢ ( 𝑧  =  𝑑  →  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) | 
						
							| 573 | 572 | eqeq2d | ⊢ ( 𝑧  =  𝑑  →  ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 574 | 573 | ralbidv | ⊢ ( 𝑧  =  𝑑  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 575 | 574 | imbi1d | ⊢ ( 𝑧  =  𝑑  →  ( ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  )  ↔  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) ) | 
						
							| 576 | 570 575 | rspc2va | ⊢ ( ( ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) )  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 577 | 565 503 517 576 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ∀ 𝑤  ∈  ( 𝑏  ∪  { 𝑐 } ) ( ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) ) | 
						
							| 578 | 564 577 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) )  =   0  ) | 
						
							| 579 | 531 578 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  +   0  ) ) | 
						
							| 580 | 308 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  +   0  )  =  (  0   +   0  ) ) | 
						
							| 581 | 3 6 4 | grplid | ⊢ ( ( 𝑅  ∈  Grp  ∧   0   ∈  𝐾 )  →  (  0   +   0  )  =   0  ) | 
						
							| 582 | 115 133 581 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  (  0   +   0  )  =   0  ) | 
						
							| 583 | 580 582 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  +   0  )  =   0  ) | 
						
							| 584 | 583 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·   0  )  +   0  )  =   0  ) | 
						
							| 585 | 579 584 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  𝑎  ∈  𝐵 )  ∧  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =   0  ) | 
						
							| 586 | 104 105 106 392 393 394 585 | syl33anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( ( ( ( 𝑎 ‘ 𝑐 ) ( -g ‘ 𝑅 ) if ( 𝑐  ∈  𝑑 ,   1  ,   0  ) )  ·  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( ( 1st  ‘ 𝑒 )  =  ( 1st  ‘ 𝑐 ) ,  if ( 𝑒  =  𝑐 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  +  ( 𝐷 ‘ ( 𝑒  ∈  ( 𝑁  ×  𝑁 )  ↦  if ( 𝑒  =  𝑐 ,  if ( 𝑒  ∈  𝑑 ,   1  ,   0  ) ,  ( 𝑎 ‘ 𝑒 ) ) ) ) )  =   0  ) | 
						
							| 587 | 288 391 586 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) | 
						
							| 588 | 587 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ) )  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) | 
						
							| 589 | 588 | ralrimivva | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  →  ∀ 𝑎  ∈  𝐵 ∀ 𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) | 
						
							| 590 |  | fveq1 | ⊢ ( 𝑎  =  𝑦  →  ( 𝑎 ‘ 𝑤 )  =  ( 𝑦 ‘ 𝑤 ) ) | 
						
							| 591 | 590 | eqeq1d | ⊢ ( 𝑎  =  𝑦  →  ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 592 | 591 | ralbidv | ⊢ ( 𝑎  =  𝑦  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  ) ) ) | 
						
							| 593 |  | fveqeq2 | ⊢ ( 𝑎  =  𝑦  →  ( ( 𝐷 ‘ 𝑎 )  =   0   ↔  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 594 | 592 593 | imbi12d | ⊢ ( 𝑎  =  𝑦  →  ( ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  )  ↔  ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 595 |  | elequ2 | ⊢ ( 𝑑  =  𝑧  →  ( 𝑤  ∈  𝑑  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 596 | 595 | ifbid | ⊢ ( 𝑑  =  𝑧  →  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) | 
						
							| 597 | 596 | eqeq2d | ⊢ ( 𝑑  =  𝑧  →  ( ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 598 | 597 | ralbidv | ⊢ ( 𝑑  =  𝑧  →  ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 599 | 598 | imbi1d | ⊢ ( 𝑑  =  𝑧  →  ( ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 600 | 594 599 | cbvral2vw | ⊢ ( ∀ 𝑎  ∈  𝐵 ∀ 𝑑  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑑 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 601 | 589 600 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 602 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 603 |  | raleq | ⊢ ( 𝑥  =  𝑏  →  ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 604 | 603 | imbi1d | ⊢ ( 𝑥  =  𝑏  →  ( ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 605 | 604 | 2ralbidv | ⊢ ( 𝑥  =  𝑏  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 606 | 602 605 15 | elab2 | ⊢ ( 𝑏  ∈  𝑌  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑏 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 607 | 601 606 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 )  →  𝑏  ∈  𝑌 ) | 
						
							| 608 | 607 | 3expia | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) )  →  ( ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌  →  𝑏  ∈  𝑌 ) ) | 
						
							| 609 | 608 | con3d | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 ) )  →  ( ¬  𝑏  ∈  𝑌  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) | 
						
							| 610 | 609 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ( ¬  𝑏  ∈  𝑌  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) | 
						
							| 611 | 610 | a1i | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ( ¬  𝑏  ∈  𝑌  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) ) | 
						
							| 612 | 611 | a2d | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑏  ∈  𝑌 )  →  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) ) | 
						
							| 613 | 103 612 | syl5 | ⊢ ( ( 𝑏  ∈  Fin  ∧  ¬  𝑐  ∈  𝑏 )  →  ( ( ( 𝜑  ∧  𝑏  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  𝑏  ∈  𝑌 )  →  ( ( 𝜑  ∧  ( 𝑏  ∪  { 𝑐 } )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑏  ∪  { 𝑐 } )  ∈  𝑌 ) ) ) | 
						
							| 614 | 82 87 92 97 98 613 | findcard2s | ⊢ ( ( 𝑁  ×  𝑁 )  ∈  Fin  →  ( ( 𝜑  ∧  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) | 
						
							| 615 | 77 614 | mpcom | ⊢ ( ( 𝜑  ∧  ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  ∧  ¬  ∅  ∈  𝑌 )  →  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) | 
						
							| 616 | 615 | 3exp | ⊢ ( 𝜑  →  ( ( 𝑁  ×  𝑁 )  ⊆  ( 𝑁  ×  𝑁 )  →  ( ¬  ∅  ∈  𝑌  →  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) ) | 
						
							| 617 | 76 616 | mpi | ⊢ ( 𝜑  →  ( ¬  ∅  ∈  𝑌  →  ¬  ( 𝑁  ×  𝑁 )  ∈  𝑌 ) ) | 
						
							| 618 | 75 617 | mt4d | ⊢ ( 𝜑  →  ∅  ∈  𝑌 ) | 
						
							| 619 | 618 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ∅  ∈  𝑌 ) | 
						
							| 620 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 621 |  | raleq | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 622 | 621 | imbi1d | ⊢ ( 𝑥  =  ∅  →  ( ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 623 | 622 | 2ralbidv | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  𝑥 ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) ) | 
						
							| 624 | 620 623 15 | elab2 | ⊢ ( ∅  ∈  𝑌  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 625 | 619 624 | sylib | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) ) | 
						
							| 626 |  | fveq1 | ⊢ ( 𝑦  =  𝑎  →  ( 𝑦 ‘ 𝑤 )  =  ( 𝑎 ‘ 𝑤 ) ) | 
						
							| 627 | 626 | eqeq1d | ⊢ ( 𝑦  =  𝑎  →  ( ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 628 | 627 | ralbidv | ⊢ ( 𝑦  =  𝑎  →  ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  ) ) ) | 
						
							| 629 |  | fveqeq2 | ⊢ ( 𝑦  =  𝑎  →  ( ( 𝐷 ‘ 𝑦 )  =   0   ↔  ( 𝐷 ‘ 𝑎 )  =   0  ) ) | 
						
							| 630 | 628 629 | imbi12d | ⊢ ( 𝑦  =  𝑎  →  ( ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) ) | 
						
							| 631 |  | eleq2 | ⊢ ( 𝑧  =  (  I   ↾  𝑁 )  →  ( 𝑤  ∈  𝑧  ↔  𝑤  ∈  (  I   ↾  𝑁 ) ) ) | 
						
							| 632 | 631 | ifbid | ⊢ ( 𝑧  =  (  I   ↾  𝑁 )  →  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  ) ) | 
						
							| 633 | 632 | eqeq2d | ⊢ ( 𝑧  =  (  I   ↾  𝑁 )  →  ( ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  ) ) ) | 
						
							| 634 | 633 | ralbidv | ⊢ ( 𝑧  =  (  I   ↾  𝑁 )  →  ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  ↔  ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  ) ) ) | 
						
							| 635 | 634 | imbi1d | ⊢ ( 𝑧  =  (  I   ↾  𝑁 )  →  ( ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  )  ↔  ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) ) | 
						
							| 636 | 630 635 | rspc2va | ⊢ ( ( ( 𝑎  ∈  𝐵  ∧  (  I   ↾  𝑁 )  ∈  ( 𝑁  ↑m  𝑁 ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  ( 𝑁  ↑m  𝑁 ) ( ∀ 𝑤  ∈  ∅ ( 𝑦 ‘ 𝑤 )  =  if ( 𝑤  ∈  𝑧 ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑦 )  =   0  ) )  →  ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) | 
						
							| 637 | 17 23 625 636 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑤  ∈  ∅ ( 𝑎 ‘ 𝑤 )  =  if ( 𝑤  ∈  (  I   ↾  𝑁 ) ,   1  ,   0  )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) ) | 
						
							| 638 | 16 637 | mpi | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑎 )  =   0  ) | 
						
							| 639 | 638 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑎  ∈  𝐵  ↦  ( 𝐷 ‘ 𝑎 ) )  =  ( 𝑎  ∈  𝐵  ↦   0  ) ) | 
						
							| 640 | 10 | feqmptd | ⊢ ( 𝜑  →  𝐷  =  ( 𝑎  ∈  𝐵  ↦  ( 𝐷 ‘ 𝑎 ) ) ) | 
						
							| 641 |  | fconstmpt | ⊢ ( 𝐵  ×  {  0  } )  =  ( 𝑎  ∈  𝐵  ↦   0  ) | 
						
							| 642 | 641 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ×  {  0  } )  =  ( 𝑎  ∈  𝐵  ↦   0  ) ) | 
						
							| 643 | 639 640 642 | 3eqtr4d | ⊢ ( 𝜑  →  𝐷  =  ( 𝐵  ×  {  0  } ) ) |