Metamath Proof Explorer


Theorem mdiv

Description: A division law. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a ( 𝜑𝐴 ∈ ℂ )
ldiv.b ( 𝜑𝐵 ∈ ℂ )
ldiv.c ( 𝜑𝐶 ∈ ℂ )
mdiv.an0 ( 𝜑𝐴 ≠ 0 )
mdiv.bn0 ( 𝜑𝐵 ≠ 0 )
Assertion mdiv ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ldiv.a ( 𝜑𝐴 ∈ ℂ )
2 ldiv.b ( 𝜑𝐵 ∈ ℂ )
3 ldiv.c ( 𝜑𝐶 ∈ ℂ )
4 mdiv.an0 ( 𝜑𝐴 ≠ 0 )
5 mdiv.bn0 ( 𝜑𝐵 ≠ 0 )
6 1 2 3 5 ldiv ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶𝐴 = ( 𝐶 / 𝐵 ) ) )
7 1 2 3 4 rdiv ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶𝐵 = ( 𝐶 / 𝐴 ) ) )
8 6 7 bitr3d ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) )