Description: A division law. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
mdiv.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
mdiv.bn0 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
Assertion | mdiv | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | mdiv.an0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
5 | mdiv.bn0 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
6 | 1 2 3 5 | ldiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
7 | 1 2 3 4 | rdiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |
8 | 6 7 | bitr3d | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) ↔ 𝐵 = ( 𝐶 / 𝐴 ) ) ) |