Metamath Proof Explorer


Theorem mdsl2bi

Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of MaedaMaeda p. 2. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion mdsl2bi ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 mdsl.1 𝐴C
2 mdsl.2 𝐵C
3 1 2 mdsl2i ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) )
4 1 2 chincli ( 𝐴𝐵 ) ∈ C
5 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
6 chlej2 ( ( ( ( 𝐴𝐵 ) ∈ C𝐴C𝑥C ) ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( 𝑥 𝐴 ) )
7 5 6 mpan2 ( ( ( 𝐴𝐵 ) ∈ C𝐴C𝑥C ) → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( 𝑥 𝐴 ) )
8 4 1 7 mp3an12 ( 𝑥C → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( 𝑥 𝐴 ) )
9 8 adantr ( ( 𝑥C𝑥𝐵 ) → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( 𝑥 𝐴 ) )
10 simpr ( ( 𝑥C𝑥𝐵 ) → 𝑥𝐵 )
11 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
12 10 11 jctir ( ( 𝑥C𝑥𝐵 ) → ( 𝑥𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) )
13 chlub ( ( 𝑥C ∧ ( 𝐴𝐵 ) ∈ C𝐵C ) → ( ( 𝑥𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑥 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
14 4 2 13 mp3an23 ( 𝑥C → ( ( 𝑥𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑥 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
15 14 adantr ( ( 𝑥C𝑥𝐵 ) → ( ( 𝑥𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑥 ( 𝐴𝐵 ) ) ⊆ 𝐵 ) )
16 12 15 mpbid ( ( 𝑥C𝑥𝐵 ) → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ 𝐵 )
17 9 16 ssind ( ( 𝑥C𝑥𝐵 ) → ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) )
18 17 biantrud ( ( 𝑥C𝑥𝐵 ) → ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ∧ ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ) ) )
19 eqss ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ∧ ( 𝑥 ( 𝐴𝐵 ) ) ⊆ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ) )
20 18 19 bitr4di ( ( 𝑥C𝑥𝐵 ) → ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )
21 20 ex ( 𝑥C → ( 𝑥𝐵 → ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
22 21 adantld ( 𝑥C → ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ↔ ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
23 22 pm5.74d ( 𝑥C → ( ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) ↔ ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) ) )
24 23 ralbiia ( ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑥 ( 𝐴𝐵 ) ) ) ↔ ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )
25 3 24 bitri ( 𝐴 𝑀 𝐵 ↔ ∀ 𝑥C ( ( ( 𝐴𝐵 ) ⊆ 𝑥𝑥𝐵 ) → ( ( 𝑥 𝐴 ) ∩ 𝐵 ) = ( 𝑥 ( 𝐴𝐵 ) ) ) )