Step |
Hyp |
Ref |
Expression |
1 |
|
mdi |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
2 |
1
|
3adantr2 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) |
3 |
|
chincl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) |
4 |
|
chlejb2 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐶 ) ) |
5 |
3 4
|
stoic3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ↔ ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐶 ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) → ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐶 ) |
7 |
6
|
3ad2antr2 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( 𝐶 ∨ℋ ( 𝐴 ∩ 𝐵 ) ) = 𝐶 ) |
8 |
2 7
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |