Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdslmd.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mdslmd.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
mdslmd.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
|
mddmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ) |
6 |
1 2 5
|
mp2an |
⊢ ( 𝐴 𝑀ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) |
7 |
|
dmdmd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
8 |
2 1 7
|
mp2an |
⊢ ( 𝐵 𝑀ℋ* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) |
9 |
6 8
|
anbi12ci |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ) |
10 |
3 4
|
chincli |
⊢ ( 𝐶 ∩ 𝐷 ) ∈ Cℋ |
11 |
1 10
|
chsscon3i |
⊢ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ↔ ( ⊥ ‘ ( 𝐶 ∩ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
12 |
3 4
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐶 ∩ 𝐷 ) ) = ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐷 ) ) |
13 |
12
|
sseq1i |
⊢ ( ( ⊥ ‘ ( 𝐶 ∩ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
14 |
11 13
|
bitri |
⊢ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
15 |
3 4
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ |
16 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
17 |
15 16
|
chsscon3i |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐶 ∨ℋ 𝐷 ) ) ) |
18 |
1 2
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
19 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
20 |
18 19
|
eqtri |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) |
21 |
3 4
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐶 ∨ℋ 𝐷 ) ) = ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) |
22 |
20 21
|
sseq12i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐶 ∨ℋ 𝐷 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ) |
23 |
17 22
|
bitri |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ) |
24 |
14 23
|
anbi12ci |
⊢ ( ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ∧ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
25 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
26 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
27 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐶 ) ∈ Cℋ |
28 |
4
|
choccli |
⊢ ( ⊥ ‘ 𝐷 ) ∈ Cℋ |
29 |
25 26 27 28
|
mdslmd2i |
⊢ ( ( ( ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) 𝑀ℋ* ( ⊥ ‘ 𝐵 ) ) ∧ ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ∧ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ⊥ ‘ 𝐶 ) 𝑀ℋ ( ⊥ ‘ 𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) 𝑀ℋ ( ( ⊥ ‘ 𝐷 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
30 |
9 24 29
|
syl2anb |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( ⊥ ‘ 𝐶 ) 𝑀ℋ ( ⊥ ‘ 𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) 𝑀ℋ ( ( ⊥ ‘ 𝐷 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
31 |
|
dmdmd |
⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) → ( 𝐶 𝑀ℋ* 𝐷 ↔ ( ⊥ ‘ 𝐶 ) 𝑀ℋ ( ⊥ ‘ 𝐷 ) ) ) |
32 |
3 4 31
|
mp2an |
⊢ ( 𝐶 𝑀ℋ* 𝐷 ↔ ( ⊥ ‘ 𝐶 ) 𝑀ℋ ( ⊥ ‘ 𝐷 ) ) |
33 |
3 2
|
chincli |
⊢ ( 𝐶 ∩ 𝐵 ) ∈ Cℋ |
34 |
4 2
|
chincli |
⊢ ( 𝐷 ∩ 𝐵 ) ∈ Cℋ |
35 |
|
dmdmd |
⊢ ( ( ( 𝐶 ∩ 𝐵 ) ∈ Cℋ ∧ ( 𝐷 ∩ 𝐵 ) ∈ Cℋ ) → ( ( 𝐶 ∩ 𝐵 ) 𝑀ℋ* ( 𝐷 ∩ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐶 ∩ 𝐵 ) ) 𝑀ℋ ( ⊥ ‘ ( 𝐷 ∩ 𝐵 ) ) ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( ( 𝐶 ∩ 𝐵 ) 𝑀ℋ* ( 𝐷 ∩ 𝐵 ) ↔ ( ⊥ ‘ ( 𝐶 ∩ 𝐵 ) ) 𝑀ℋ ( ⊥ ‘ ( 𝐷 ∩ 𝐵 ) ) ) |
37 |
3 2
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐶 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
38 |
4 2
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐷 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐷 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
39 |
37 38
|
breq12i |
⊢ ( ( ⊥ ‘ ( 𝐶 ∩ 𝐵 ) ) 𝑀ℋ ( ⊥ ‘ ( 𝐷 ∩ 𝐵 ) ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) 𝑀ℋ ( ( ⊥ ‘ 𝐷 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
40 |
36 39
|
bitri |
⊢ ( ( 𝐶 ∩ 𝐵 ) 𝑀ℋ* ( 𝐷 ∩ 𝐵 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) 𝑀ℋ ( ( ⊥ ‘ 𝐷 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) |
41 |
30 32 40
|
3bitr4g |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( 𝐶 𝑀ℋ* 𝐷 ↔ ( 𝐶 ∩ 𝐵 ) 𝑀ℋ* ( 𝐷 ∩ 𝐵 ) ) ) |