Metamath Proof Explorer


Theorem mdsldmd1i

Description: Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion mdsldmd1i ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( 𝐴 ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ) ) → ( 𝐶 𝑀* 𝐷 ↔ ( 𝐶𝐵 ) 𝑀* ( 𝐷𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 mdslmd.1 𝐴C
2 mdslmd.2 𝐵C
3 mdslmd.3 𝐶C
4 mdslmd.4 𝐷C
5 mddmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )
6 1 2 5 mp2an ( 𝐴 𝑀 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) )
7 dmdmd ( ( 𝐵C𝐴C ) → ( 𝐵 𝑀* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
8 2 1 7 mp2an ( 𝐵 𝑀* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) )
9 6 8 anbi12ci ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) )
10 3 4 chincli ( 𝐶𝐷 ) ∈ C
11 1 10 chsscon3i ( 𝐴 ⊆ ( 𝐶𝐷 ) ↔ ( ⊥ ‘ ( 𝐶𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) )
12 3 4 chdmm1i ( ⊥ ‘ ( 𝐶𝐷 ) ) = ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐷 ) )
13 12 sseq1i ( ( ⊥ ‘ ( 𝐶𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) )
14 11 13 bitri ( 𝐴 ⊆ ( 𝐶𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) )
15 3 4 chjcli ( 𝐶 𝐷 ) ∈ C
16 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
17 15 16 chsscon3i ( ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ↔ ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐶 𝐷 ) ) )
18 1 2 chdmj1i ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) )
19 incom ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) )
20 18 19 eqtri ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) )
21 3 4 chdmj1i ( ⊥ ‘ ( 𝐶 𝐷 ) ) = ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) )
22 20 21 sseq12i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐶 𝐷 ) ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) )
23 17 22 bitri ( ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ↔ ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) )
24 14 23 anbi12ci ( ( 𝐴 ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ) ↔ ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ∧ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
25 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
26 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
27 3 choccli ( ⊥ ‘ 𝐶 ) ∈ C
28 4 choccli ( ⊥ ‘ 𝐷 ) ∈ C
29 25 26 27 28 mdslmd2i ( ( ( ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ∧ ( ⊥ ‘ 𝐴 ) 𝑀* ( ⊥ ‘ 𝐵 ) ) ∧ ( ( ( ⊥ ‘ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ( ⊥ ‘ 𝐶 ) ∩ ( ⊥ ‘ 𝐷 ) ) ∧ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐷 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) → ( ( ⊥ ‘ 𝐶 ) 𝑀 ( ⊥ ‘ 𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐵 ) ) 𝑀 ( ( ⊥ ‘ 𝐷 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) )
30 9 24 29 syl2anb ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( 𝐴 ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ) ) → ( ( ⊥ ‘ 𝐶 ) 𝑀 ( ⊥ ‘ 𝐷 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐵 ) ) 𝑀 ( ( ⊥ ‘ 𝐷 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) )
31 dmdmd ( ( 𝐶C𝐷C ) → ( 𝐶 𝑀* 𝐷 ↔ ( ⊥ ‘ 𝐶 ) 𝑀 ( ⊥ ‘ 𝐷 ) ) )
32 3 4 31 mp2an ( 𝐶 𝑀* 𝐷 ↔ ( ⊥ ‘ 𝐶 ) 𝑀 ( ⊥ ‘ 𝐷 ) )
33 3 2 chincli ( 𝐶𝐵 ) ∈ C
34 4 2 chincli ( 𝐷𝐵 ) ∈ C
35 dmdmd ( ( ( 𝐶𝐵 ) ∈ C ∧ ( 𝐷𝐵 ) ∈ C ) → ( ( 𝐶𝐵 ) 𝑀* ( 𝐷𝐵 ) ↔ ( ⊥ ‘ ( 𝐶𝐵 ) ) 𝑀 ( ⊥ ‘ ( 𝐷𝐵 ) ) ) )
36 33 34 35 mp2an ( ( 𝐶𝐵 ) 𝑀* ( 𝐷𝐵 ) ↔ ( ⊥ ‘ ( 𝐶𝐵 ) ) 𝑀 ( ⊥ ‘ ( 𝐷𝐵 ) ) )
37 3 2 chdmm1i ( ⊥ ‘ ( 𝐶𝐵 ) ) = ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐵 ) )
38 4 2 chdmm1i ( ⊥ ‘ ( 𝐷𝐵 ) ) = ( ( ⊥ ‘ 𝐷 ) ∨ ( ⊥ ‘ 𝐵 ) )
39 37 38 breq12i ( ( ⊥ ‘ ( 𝐶𝐵 ) ) 𝑀 ( ⊥ ‘ ( 𝐷𝐵 ) ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐵 ) ) 𝑀 ( ( ⊥ ‘ 𝐷 ) ∨ ( ⊥ ‘ 𝐵 ) ) )
40 36 39 bitri ( ( 𝐶𝐵 ) 𝑀* ( 𝐷𝐵 ) ↔ ( ( ⊥ ‘ 𝐶 ) ∨ ( ⊥ ‘ 𝐵 ) ) 𝑀 ( ( ⊥ ‘ 𝐷 ) ∨ ( ⊥ ‘ 𝐵 ) ) )
41 30 32 40 3bitr4g ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( 𝐴 ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ ( 𝐴 𝐵 ) ) ) → ( 𝐶 𝑀* 𝐷 ↔ ( 𝐶𝐵 ) 𝑀* ( 𝐷𝐵 ) ) )