Step |
Hyp |
Ref |
Expression |
1 |
|
mdslle1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdslle1.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mdslle1.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
mdslle1.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
3 4 1
|
lejdiri |
⊢ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) |
6 |
5
|
a1i |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |
7 |
|
ssin |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ) |
8 |
7
|
bicomi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ) |
9 |
3 4 2
|
chlubi |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ↔ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) |
10 |
9
|
bicomi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) |
11 |
8 10
|
anbi12i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ↔ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) → 𝐵 𝑀ℋ* 𝐴 ) |
13 |
1 3
|
chub2i |
⊢ 𝐴 ⊆ ( 𝐶 ∨ℋ 𝐴 ) |
14 |
1 4
|
chub2i |
⊢ 𝐴 ⊆ ( 𝐷 ∨ℋ 𝐴 ) |
15 |
13 14
|
ssini |
⊢ 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) |
16 |
15
|
a1i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) → 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |
17 |
3 2 1
|
chlej1i |
⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |
18 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
19 |
17 18
|
sseqtrdi |
⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
20 |
|
ssinss1 |
⊢ ( ( 𝐶 ∨ℋ 𝐴 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
23 |
3 1
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐴 ) ∈ Cℋ |
24 |
4 1
|
chjcli |
⊢ ( 𝐷 ∨ℋ 𝐴 ) ∈ Cℋ |
25 |
23 24
|
chincli |
⊢ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∈ Cℋ |
26 |
1 2 25
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∈ Cℋ ) |
27 |
|
dmdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |
28 |
26 27
|
mpan |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |
29 |
12 16 22 28
|
syl3an |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∨ℋ 𝐴 ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |
30 |
|
inss1 |
⊢ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐶 ∨ℋ 𝐴 ) |
31 |
|
ssrin |
⊢ ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐶 ∨ℋ 𝐴 ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) ) |
32 |
30 31
|
ax-mp |
⊢ ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) |
33 |
|
simpl |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) → 𝐴 𝑀ℋ 𝐵 ) |
34 |
|
simpl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
35 |
|
simpl |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
36 |
1 2 3
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) |
37 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
38 |
36 37
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
39 |
33 34 35 38
|
syl3an |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
40 |
32 39
|
sseqtrid |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ 𝐶 ) |
41 |
|
inss2 |
⊢ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) |
42 |
|
ssrin |
⊢ ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐷 ∨ℋ 𝐴 ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ) |
43 |
41 42
|
ax-mp |
⊢ ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) |
44 |
|
simpr |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) |
45 |
|
simpr |
⊢ ( ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) → 𝐷 ⊆ 𝐵 ) |
46 |
1 2 4
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) |
47 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
48 |
46 47
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
49 |
33 44 45 48
|
syl3an |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
50 |
43 49
|
sseqtrid |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ 𝐷 ) |
51 |
40 50
|
ssind |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ) |
52 |
25 2
|
chincli |
⊢ ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∈ Cℋ |
53 |
3 4
|
chincli |
⊢ ( 𝐶 ∩ 𝐷 ) ∈ Cℋ |
54 |
52 53 1
|
chlej1i |
⊢ ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) → ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ) |
55 |
51 54
|
syl |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∩ 𝐵 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ) |
56 |
29 55
|
eqsstrrd |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ) |
57 |
56
|
3expb |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵 ) ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ) |
58 |
11 57
|
sylan2b |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) ) |
59 |
6 58
|
eqssd |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐷 ) ∨ℋ 𝐴 ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ) |