Step |
Hyp |
Ref |
Expression |
1 |
|
mdslle1.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdslle1.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mdslle1.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
mdslle1.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
|
ssrin |
⊢ ( 𝐶 ⊆ 𝐷 → ( 𝐶 ∩ 𝐵 ) ⊆ ( 𝐷 ∩ 𝐵 ) ) |
6 |
3 2
|
chincli |
⊢ ( 𝐶 ∩ 𝐵 ) ∈ Cℋ |
7 |
4 2
|
chincli |
⊢ ( 𝐷 ∩ 𝐵 ) ∈ Cℋ |
8 |
6 7 1
|
chlej1i |
⊢ ( ( 𝐶 ∩ 𝐵 ) ⊆ ( 𝐷 ∩ 𝐵 ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐷 ∩ 𝐵 ) ∨ℋ 𝐴 ) ) |
9 |
|
id |
⊢ ( 𝐵 𝑀ℋ* 𝐴 → 𝐵 𝑀ℋ* 𝐴 ) |
10 |
|
ssin |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷 ) ↔ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ) |
11 |
10
|
bicomi |
⊢ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷 ) ) |
12 |
11
|
simplbi |
⊢ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) → 𝐴 ⊆ 𝐶 ) |
13 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
14 |
3 4 13
|
chlubi |
⊢ ( ( 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐷 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
15 |
14
|
bicomi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐷 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
16 |
15
|
simplbi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
17 |
1 2 3
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) |
18 |
|
dmdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐶 ) |
19 |
17 18
|
mpan |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐶 ) |
20 |
9 12 16 19
|
syl3an |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐶 ) |
21 |
11
|
simprbi |
⊢ ( 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) → 𝐴 ⊆ 𝐷 ) |
22 |
15
|
simprbi |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → 𝐷 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
23 |
1 2 4
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) |
24 |
|
dmdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ∧ ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐷 ∧ 𝐷 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐷 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐷 ) |
25 |
23 24
|
mpan |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐷 ∧ 𝐷 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐷 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐷 ) |
26 |
9 21 22 25
|
syl3an |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐷 ∩ 𝐵 ) ∨ℋ 𝐴 ) = 𝐷 ) |
27 |
20 26
|
sseq12d |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( ( 𝐶 ∩ 𝐵 ) ∨ℋ 𝐴 ) ⊆ ( ( 𝐷 ∩ 𝐵 ) ∨ℋ 𝐴 ) ↔ 𝐶 ⊆ 𝐷 ) ) |
28 |
8 27
|
syl5ib |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐵 ) ⊆ ( 𝐷 ∩ 𝐵 ) → 𝐶 ⊆ 𝐷 ) ) |
29 |
5 28
|
impbid2 |
⊢ ( ( 𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐶 ⊆ 𝐷 ↔ ( 𝐶 ∩ 𝐵 ) ⊆ ( 𝐷 ∩ 𝐵 ) ) ) |