Metamath Proof Explorer


Theorem mdslle2i

Description: Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 𝐴C
mdslle1.2 𝐵C
mdslle1.3 𝐶C
mdslle1.4 𝐷C
Assertion mdslle2i ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( 𝐶𝐷 ↔ ( 𝐶 𝐴 ) ⊆ ( 𝐷 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 mdslle1.1 𝐴C
2 mdslle1.2 𝐵C
3 mdslle1.3 𝐶C
4 mdslle1.4 𝐷C
5 3 4 1 chlej1i ( 𝐶𝐷 → ( 𝐶 𝐴 ) ⊆ ( 𝐷 𝐴 ) )
6 ssrin ( ( 𝐶 𝐴 ) ⊆ ( 𝐷 𝐴 ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) ⊆ ( ( 𝐷 𝐴 ) ∩ 𝐵 ) )
7 id ( 𝐴 𝑀 𝐵𝐴 𝑀 𝐵 )
8 ssin ( ( ( 𝐴𝐵 ) ⊆ 𝐶 ∧ ( 𝐴𝐵 ) ⊆ 𝐷 ) ↔ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) )
9 8 bicomi ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ↔ ( ( 𝐴𝐵 ) ⊆ 𝐶 ∧ ( 𝐴𝐵 ) ⊆ 𝐷 ) )
10 9 simplbi ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )
11 3 4 2 chlubi ( ( 𝐶𝐵𝐷𝐵 ) ↔ ( 𝐶 𝐷 ) ⊆ 𝐵 )
12 11 bicomi ( ( 𝐶 𝐷 ) ⊆ 𝐵 ↔ ( 𝐶𝐵𝐷𝐵 ) )
13 12 simplbi ( ( 𝐶 𝐷 ) ⊆ 𝐵𝐶𝐵 )
14 1 2 3 3pm3.2i ( 𝐴C𝐵C𝐶C )
15 mdsl3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
16 14 15 mpan ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
17 7 10 13 16 syl3an ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
18 9 simprbi ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) → ( 𝐴𝐵 ) ⊆ 𝐷 )
19 12 simprbi ( ( 𝐶 𝐷 ) ⊆ 𝐵𝐷𝐵 )
20 1 2 4 3pm3.2i ( 𝐴C𝐵C𝐷C )
21 mdsl3 ( ( ( 𝐴C𝐵C𝐷C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
22 20 21 mpan ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
23 7 18 19 22 syl3an ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
24 17 23 sseq12d ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( ( 𝐶 𝐴 ) ∩ 𝐵 ) ⊆ ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ↔ 𝐶𝐷 ) )
25 6 24 syl5ib ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 𝐴 ) ⊆ ( 𝐷 𝐴 ) → 𝐶𝐷 ) )
26 5 25 impbid2 ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( 𝐶𝐷 ↔ ( 𝐶 𝐴 ) ⊆ ( 𝐷 𝐴 ) ) )