| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
mdslmd.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
mdslmd.3 |
⊢ 𝐶 ∈ Cℋ |
| 4 |
|
mdslmd.4 |
⊢ 𝐷 ∈ Cℋ |
| 5 |
3 4
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐷 ) ∈ Cℋ |
| 6 |
5 2 1
|
chlej1i |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → ( ( 𝐶 ∨ℋ 𝐷 ) ∨ℋ 𝐴 ) ⊆ ( 𝐵 ∨ℋ 𝐴 ) ) |
| 7 |
3 4 1
|
chjjdiri |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ∨ℋ 𝐴 ) = ( ( 𝐶 ∨ℋ 𝐴 ) ∨ℋ ( 𝐷 ∨ℋ 𝐴 ) ) |
| 8 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 9 |
6 7 8
|
3sstr3g |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → ( ( 𝐶 ∨ℋ 𝐴 ) ∨ℋ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∨ℋ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 11 |
1 3
|
chub2i |
⊢ 𝐴 ⊆ ( 𝐶 ∨ℋ 𝐴 ) |
| 12 |
1 4
|
chub2i |
⊢ 𝐴 ⊆ ( 𝐷 ∨ℋ 𝐴 ) |
| 13 |
11 12
|
ssini |
⊢ 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) |
| 14 |
10 13
|
jctil |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∨ℋ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 15 |
3 1
|
chjcli |
⊢ ( 𝐶 ∨ℋ 𝐴 ) ∈ Cℋ |
| 16 |
4 1
|
chjcli |
⊢ ( 𝐷 ∨ℋ 𝐴 ) ∈ Cℋ |
| 17 |
1 2 15 16
|
mdslmd1i |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( 𝐴 ⊆ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ ( 𝐷 ∨ℋ 𝐴 ) ) ∧ ( ( 𝐶 ∨ℋ 𝐴 ) ∨ℋ ( 𝐷 ∨ℋ 𝐴 ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) 𝑀ℋ ( 𝐷 ∨ℋ 𝐴 ) ↔ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) 𝑀ℋ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ) ) |
| 18 |
14 17
|
sylan2 |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) 𝑀ℋ ( 𝐷 ∨ℋ 𝐴 ) ↔ ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) 𝑀ℋ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ) ) |
| 19 |
|
id |
⊢ ( 𝐴 𝑀ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵 ) |
| 20 |
|
inss1 |
⊢ ( 𝐶 ∩ 𝐷 ) ⊆ 𝐶 |
| 21 |
|
sstr |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∩ 𝐷 ) ⊆ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 22 |
20 21
|
mpan2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) |
| 23 |
3 4
|
chub1i |
⊢ 𝐶 ⊆ ( 𝐶 ∨ℋ 𝐷 ) |
| 24 |
|
sstr |
⊢ ( ( 𝐶 ⊆ ( 𝐶 ∨ℋ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → 𝐶 ⊆ 𝐵 ) |
| 25 |
23 24
|
mpan |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → 𝐶 ⊆ 𝐵 ) |
| 26 |
1 2 3
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) |
| 27 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 28 |
26 27
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 29 |
19 22 25 28
|
syl3an |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐶 ) |
| 30 |
|
inss2 |
⊢ ( 𝐶 ∩ 𝐷 ) ⊆ 𝐷 |
| 31 |
|
sstr |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∩ 𝐷 ) ⊆ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) |
| 32 |
30 31
|
mpan2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) |
| 33 |
4 3
|
chub2i |
⊢ 𝐷 ⊆ ( 𝐶 ∨ℋ 𝐷 ) |
| 34 |
|
sstr |
⊢ ( ( 𝐷 ⊆ ( 𝐶 ∨ℋ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → 𝐷 ⊆ 𝐵 ) |
| 35 |
33 34
|
mpan |
⊢ ( ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 → 𝐷 ⊆ 𝐵 ) |
| 36 |
1 2 4
|
3pm3.2i |
⊢ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) |
| 37 |
|
mdsl3 |
⊢ ( ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ∧ ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 38 |
36 37
|
mpan |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 39 |
19 32 35 38
|
syl3an |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) = 𝐷 ) |
| 40 |
29 39
|
breq12d |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) 𝑀ℋ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀ℋ 𝐷 ) ) |
| 41 |
40
|
3expb |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) 𝑀ℋ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀ℋ 𝐷 ) ) |
| 42 |
41
|
adantlr |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( ( ( 𝐶 ∨ℋ 𝐴 ) ∩ 𝐵 ) 𝑀ℋ ( ( 𝐷 ∨ℋ 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀ℋ 𝐷 ) ) |
| 43 |
18 42
|
bitr2d |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐶 ∩ 𝐷 ) ∧ ( 𝐶 ∨ℋ 𝐷 ) ⊆ 𝐵 ) ) → ( 𝐶 𝑀ℋ 𝐷 ↔ ( 𝐶 ∨ℋ 𝐴 ) 𝑀ℋ ( 𝐷 ∨ℋ 𝐴 ) ) ) |