Metamath Proof Explorer


Theorem mdslmd2i

Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2 (join version). (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion mdslmd2i ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) ) → ( 𝐶 𝑀 𝐷 ↔ ( 𝐶 𝐴 ) 𝑀 ( 𝐷 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 mdslmd.1 𝐴C
2 mdslmd.2 𝐵C
3 mdslmd.3 𝐶C
4 mdslmd.4 𝐷C
5 3 4 chjcli ( 𝐶 𝐷 ) ∈ C
6 5 2 1 chlej1i ( ( 𝐶 𝐷 ) ⊆ 𝐵 → ( ( 𝐶 𝐷 ) ∨ 𝐴 ) ⊆ ( 𝐵 𝐴 ) )
7 3 4 1 chjjdiri ( ( 𝐶 𝐷 ) ∨ 𝐴 ) = ( ( 𝐶 𝐴 ) ∨ ( 𝐷 𝐴 ) )
8 2 1 chjcomi ( 𝐵 𝐴 ) = ( 𝐴 𝐵 )
9 6 7 8 3sstr3g ( ( 𝐶 𝐷 ) ⊆ 𝐵 → ( ( 𝐶 𝐴 ) ∨ ( 𝐷 𝐴 ) ) ⊆ ( 𝐴 𝐵 ) )
10 9 adantl ( ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 𝐴 ) ∨ ( 𝐷 𝐴 ) ) ⊆ ( 𝐴 𝐵 ) )
11 1 3 chub2i 𝐴 ⊆ ( 𝐶 𝐴 )
12 1 4 chub2i 𝐴 ⊆ ( 𝐷 𝐴 )
13 11 12 ssini 𝐴 ⊆ ( ( 𝐶 𝐴 ) ∩ ( 𝐷 𝐴 ) )
14 10 13 jctil ( ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( 𝐴 ⊆ ( ( 𝐶 𝐴 ) ∩ ( 𝐷 𝐴 ) ) ∧ ( ( 𝐶 𝐴 ) ∨ ( 𝐷 𝐴 ) ) ⊆ ( 𝐴 𝐵 ) ) )
15 3 1 chjcli ( 𝐶 𝐴 ) ∈ C
16 4 1 chjcli ( 𝐷 𝐴 ) ∈ C
17 1 2 15 16 mdslmd1i ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( 𝐴 ⊆ ( ( 𝐶 𝐴 ) ∩ ( 𝐷 𝐴 ) ) ∧ ( ( 𝐶 𝐴 ) ∨ ( 𝐷 𝐴 ) ) ⊆ ( 𝐴 𝐵 ) ) ) → ( ( 𝐶 𝐴 ) 𝑀 ( 𝐷 𝐴 ) ↔ ( ( 𝐶 𝐴 ) ∩ 𝐵 ) 𝑀 ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ) )
18 14 17 sylan2 ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) ) → ( ( 𝐶 𝐴 ) 𝑀 ( 𝐷 𝐴 ) ↔ ( ( 𝐶 𝐴 ) ∩ 𝐵 ) 𝑀 ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ) )
19 id ( 𝐴 𝑀 𝐵𝐴 𝑀 𝐵 )
20 inss1 ( 𝐶𝐷 ) ⊆ 𝐶
21 sstr ( ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶𝐷 ) ⊆ 𝐶 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )
22 20 21 mpan2 ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) → ( 𝐴𝐵 ) ⊆ 𝐶 )
23 3 4 chub1i 𝐶 ⊆ ( 𝐶 𝐷 )
24 sstr ( ( 𝐶 ⊆ ( 𝐶 𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → 𝐶𝐵 )
25 23 24 mpan ( ( 𝐶 𝐷 ) ⊆ 𝐵𝐶𝐵 )
26 1 2 3 3pm3.2i ( 𝐴C𝐵C𝐶C )
27 mdsl3 ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
28 26 27 mpan ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐵 ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
29 19 22 25 28 syl3an ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐶 𝐴 ) ∩ 𝐵 ) = 𝐶 )
30 inss2 ( 𝐶𝐷 ) ⊆ 𝐷
31 sstr ( ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶𝐷 ) ⊆ 𝐷 ) → ( 𝐴𝐵 ) ⊆ 𝐷 )
32 30 31 mpan2 ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) → ( 𝐴𝐵 ) ⊆ 𝐷 )
33 4 3 chub2i 𝐷 ⊆ ( 𝐶 𝐷 )
34 sstr ( ( 𝐷 ⊆ ( 𝐶 𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → 𝐷𝐵 )
35 33 34 mpan ( ( 𝐶 𝐷 ) ⊆ 𝐵𝐷𝐵 )
36 1 2 4 3pm3.2i ( 𝐴C𝐵C𝐷C )
37 mdsl3 ( ( ( 𝐴C𝐵C𝐷C ) ∧ ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
38 36 37 mpan ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
39 19 32 35 38 syl3an ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( 𝐷 𝐴 ) ∩ 𝐵 ) = 𝐷 )
40 29 39 breq12d ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) → ( ( ( 𝐶 𝐴 ) ∩ 𝐵 ) 𝑀 ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀 𝐷 ) )
41 40 3expb ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) ) → ( ( ( 𝐶 𝐴 ) ∩ 𝐵 ) 𝑀 ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀 𝐷 ) )
42 41 adantlr ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) ) → ( ( ( 𝐶 𝐴 ) ∩ 𝐵 ) 𝑀 ( ( 𝐷 𝐴 ) ∩ 𝐵 ) ↔ 𝐶 𝑀 𝐷 ) )
43 18 42 bitr2d ( ( ( 𝐴 𝑀 𝐵𝐵 𝑀* 𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ ( 𝐶𝐷 ) ∧ ( 𝐶 𝐷 ) ⊆ 𝐵 ) ) → ( 𝐶 𝑀 𝐷 ↔ ( 𝐶 𝐴 ) 𝑀 ( 𝐷 𝐴 ) ) )