Step |
Hyp |
Ref |
Expression |
1 |
|
mdslmd.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
mdslmd.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
mdslmd.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
mdslmd.4 |
⊢ 𝐷 ∈ Cℋ |
5 |
|
simp1 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → 𝐴 𝑀ℋ 𝐵 ) |
6 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
7 |
|
ssmd1 |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ∧ 𝐷 ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ) → ( 𝐴 ∩ 𝐵 ) 𝑀ℋ 𝐷 ) |
8 |
6 4 7
|
mp3an12 |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 → ( 𝐴 ∩ 𝐵 ) 𝑀ℋ 𝐷 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) 𝑀ℋ 𝐷 ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) 𝑀ℋ 𝐷 ) |
11 |
|
sslin |
⊢ ( 𝐷 ⊆ 𝐵 → ( 𝐴 ∩ 𝐷 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
12 |
|
sstr |
⊢ ( ( ( 𝐴 ∩ 𝐷 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) → ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ) |
13 |
11 12
|
sylan |
⊢ ( ( 𝐷 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ) → ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ) |
14 |
13
|
ancoms |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐷 ⊆ 𝐵 ) → ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ) |
15 |
14
|
ad2ant2rl |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ) |
17 |
|
simp2r |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → 𝐶 ⊆ 𝐴 ) |
18 |
1 2 4 3
|
mdslmd3i |
⊢ ( ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) 𝑀ℋ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐷 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ) → 𝐶 𝑀ℋ ( 𝐵 ∩ 𝐷 ) ) |
19 |
5 10 16 17 18
|
syl22anc |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → 𝐶 𝑀ℋ ( 𝐵 ∩ 𝐷 ) ) |
20 |
|
sseqin2 |
⊢ ( 𝐷 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐷 ) = 𝐷 ) |
21 |
20
|
biimpi |
⊢ ( 𝐷 ⊆ 𝐵 → ( 𝐵 ∩ 𝐷 ) = 𝐷 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) → ( 𝐵 ∩ 𝐷 ) = 𝐷 ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → ( 𝐵 ∩ 𝐷 ) = 𝐷 ) |
24 |
19 23
|
breqtrd |
⊢ ( ( 𝐴 𝑀ℋ 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) → 𝐶 𝑀ℋ 𝐷 ) |