Metamath Proof Explorer


Theorem mdslmd4i

Description: Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of MaedaMaeda p. 2. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion mdslmd4i ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → 𝐶 𝑀 𝐷 )

Proof

Step Hyp Ref Expression
1 mdslmd.1 𝐴C
2 mdslmd.2 𝐵C
3 mdslmd.3 𝐶C
4 mdslmd.4 𝐷C
5 simp1 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → 𝐴 𝑀 𝐵 )
6 1 2 chincli ( 𝐴𝐵 ) ∈ C
7 ssmd1 ( ( ( 𝐴𝐵 ) ∈ C𝐷C ∧ ( 𝐴𝐵 ) ⊆ 𝐷 ) → ( 𝐴𝐵 ) 𝑀 𝐷 )
8 6 4 7 mp3an12 ( ( 𝐴𝐵 ) ⊆ 𝐷 → ( 𝐴𝐵 ) 𝑀 𝐷 )
9 8 adantr ( ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) → ( 𝐴𝐵 ) 𝑀 𝐷 )
10 9 3ad2ant3 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( 𝐴𝐵 ) 𝑀 𝐷 )
11 sslin ( 𝐷𝐵 → ( 𝐴𝐷 ) ⊆ ( 𝐴𝐵 ) )
12 sstr ( ( ( 𝐴𝐷 ) ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ 𝐶 ) → ( 𝐴𝐷 ) ⊆ 𝐶 )
13 11 12 sylan ( ( 𝐷𝐵 ∧ ( 𝐴𝐵 ) ⊆ 𝐶 ) → ( 𝐴𝐷 ) ⊆ 𝐶 )
14 13 ancoms ( ( ( 𝐴𝐵 ) ⊆ 𝐶𝐷𝐵 ) → ( 𝐴𝐷 ) ⊆ 𝐶 )
15 14 ad2ant2rl ( ( ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( 𝐴𝐷 ) ⊆ 𝐶 )
16 15 3adant1 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( 𝐴𝐷 ) ⊆ 𝐶 )
17 simp2r ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → 𝐶𝐴 )
18 1 2 4 3 mdslmd3i ( ( ( 𝐴 𝑀 𝐵 ∧ ( 𝐴𝐵 ) 𝑀 𝐷 ) ∧ ( ( 𝐴𝐷 ) ⊆ 𝐶𝐶𝐴 ) ) → 𝐶 𝑀 ( 𝐵𝐷 ) )
19 5 10 16 17 18 syl22anc ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → 𝐶 𝑀 ( 𝐵𝐷 ) )
20 sseqin2 ( 𝐷𝐵 ↔ ( 𝐵𝐷 ) = 𝐷 )
21 20 biimpi ( 𝐷𝐵 → ( 𝐵𝐷 ) = 𝐷 )
22 21 adantl ( ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) → ( 𝐵𝐷 ) = 𝐷 )
23 22 3ad2ant3 ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → ( 𝐵𝐷 ) = 𝐷 )
24 19 23 breqtrd ( ( 𝐴 𝑀 𝐵 ∧ ( ( 𝐴𝐵 ) ⊆ 𝐶𝐶𝐴 ) ∧ ( ( 𝐴𝐵 ) ⊆ 𝐷𝐷𝐵 ) ) → 𝐶 𝑀 𝐷 )