Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
eqid |
⊢ ( glb ‘ ∅ ) = ( glb ‘ ∅ ) |
3 |
|
eqid |
⊢ ( meet ‘ ∅ ) = ( meet ‘ ∅ ) |
4 |
2 3
|
meetfval |
⊢ ( ∅ ∈ V → ( meet ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } ) |
5 |
1 4
|
ax-mp |
⊢ ( meet ‘ ∅ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } |
6 |
|
df-oprab |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) } |
7 |
|
br0 |
⊢ ¬ { 𝑥 , 𝑦 } ∅ 𝑧 |
8 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
9 |
|
eqid |
⊢ ( le ‘ ∅ ) = ( le ‘ ∅ ) |
10 |
|
biid |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) |
11 |
|
id |
⊢ ( ∅ ∈ V → ∅ ∈ V ) |
12 |
8 9 2 10 11
|
glbfval |
⊢ ( ∅ ∈ V → ( glb ‘ ∅ ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) ) |
13 |
1 12
|
ax-mp |
⊢ ( glb ‘ ∅ ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) |
14 |
|
reu0 |
⊢ ¬ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) |
15 |
14
|
abf |
⊢ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } = ∅ |
16 |
15
|
reseq2i |
⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) = ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) |
17 |
|
res0 |
⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ ∅ ) = ∅ |
18 |
16 17
|
eqtri |
⊢ ( ( 𝑥 ∈ 𝒫 ∅ ↦ ( ℩ 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) ) ) ↾ { 𝑥 ∣ ∃! 𝑦 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑦 ( le ‘ ∅ ) 𝑧 ∧ ∀ 𝑤 ∈ ∅ ( ∀ 𝑧 ∈ 𝑥 𝑤 ( le ‘ ∅ ) 𝑧 → 𝑤 ( le ‘ ∅ ) 𝑦 ) ) } ) = ∅ |
19 |
13 18
|
eqtri |
⊢ ( glb ‘ ∅ ) = ∅ |
20 |
19
|
breqi |
⊢ ( { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ↔ { 𝑥 , 𝑦 } ∅ 𝑧 ) |
21 |
7 20
|
mtbir |
⊢ ¬ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 |
22 |
21
|
intnan |
⊢ ¬ ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
23 |
22
|
nex |
⊢ ¬ ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
24 |
23
|
nex |
⊢ ¬ ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
25 |
24
|
nex |
⊢ ¬ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) |
26 |
25
|
abf |
⊢ { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝑤 = 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∧ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 ) } = ∅ |
27 |
6 26
|
eqtri |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( glb ‘ ∅ ) 𝑧 } = ∅ |
28 |
5 27
|
eqtri |
⊢ ( meet ‘ ∅ ) = ∅ |