Metamath Proof Explorer


Theorem meetat

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)

Ref Expression
Hypotheses m.b 𝐵 = ( Base ‘ 𝐾 )
m.m = ( meet ‘ 𝐾 )
m.z 0 = ( 0. ‘ 𝐾 )
m.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion meetat ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → ( ( 𝑋 𝑃 ) = 𝑃 ∨ ( 𝑋 𝑃 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 m.b 𝐵 = ( Base ‘ 𝐾 )
2 m.m = ( meet ‘ 𝐾 )
3 m.z 0 = ( 0. ‘ 𝐾 )
4 m.a 𝐴 = ( Atoms ‘ 𝐾 )
5 ollat ( 𝐾 ∈ OL → 𝐾 ∈ Lat )
6 5 3ad2ant1 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → 𝐾 ∈ Lat )
7 simp2 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → 𝑋𝐵 )
8 simp3 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → 𝑃𝐴 )
9 1 4 atbase ( 𝑃𝐴𝑃𝐵 )
10 8 9 syl ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → 𝑃𝐵 )
11 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
12 1 11 2 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → ( 𝑋 𝑃 ) ( le ‘ 𝐾 ) 𝑃 )
13 6 7 10 12 syl3anc ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ) ( le ‘ 𝐾 ) 𝑃 )
14 olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )
15 14 3ad2ant1 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → 𝐾 ∈ OP )
16 1 2 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵 ) → ( 𝑋 𝑃 ) ∈ 𝐵 )
17 6 7 10 16 syl3anc ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → ( 𝑋 𝑃 ) ∈ 𝐵 )
18 1 11 3 4 leatb ( ( 𝐾 ∈ OP ∧ ( 𝑋 𝑃 ) ∈ 𝐵𝑃𝐴 ) → ( ( 𝑋 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 𝑃 ) = 𝑃 ∨ ( 𝑋 𝑃 ) = 0 ) ) )
19 15 17 8 18 syl3anc ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → ( ( 𝑋 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 𝑃 ) = 𝑃 ∨ ( 𝑋 𝑃 ) = 0 ) ) )
20 13 19 mpbid ( ( 𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴 ) → ( ( 𝑋 𝑃 ) = 𝑃 ∨ ( 𝑋 𝑃 ) = 0 ) )