Step |
Hyp |
Ref |
Expression |
1 |
|
m.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
m.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
m.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
m.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
7 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
9 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ) |
13 |
6 7 10 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ) |
14 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ OP ) |
16 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ) |
17 |
6 7 10 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ) |
18 |
1 11 3 4
|
leatb |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) ) |
19 |
15 17 8 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) ) |
20 |
13 19
|
mpbid |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |