Step |
Hyp |
Ref |
Expression |
1 |
|
meetcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
meetcl.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
meetcl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
4 |
|
meetcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
meetcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
meetcl.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
7 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
8 |
7 2 3 4 5
|
meetval |
⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
9 |
7 2 3 4 5
|
meetdef |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) |
11 |
1 7 3 10
|
glbcl |
⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 ) |
12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |