| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meetcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
meetcl.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
meetcl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
| 4 |
|
meetcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
meetcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
meetcl.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
| 7 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
| 8 |
7 2 3 4 5
|
meetval |
⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 |
7 2 3 4 5
|
meetdef |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 10 |
6 9
|
mpbid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 11 |
1 7 3 10
|
glbcl |
⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 ) |
| 12 |
8 11
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |