| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meetcom.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | meetcom.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 3 |  | prcom | ⊢ { 𝑌 ,  𝑋 }  =  { 𝑋 ,  𝑌 } | 
						
							| 4 | 3 | fveq2i | ⊢ ( ( glb ‘ 𝐾 ) ‘ { 𝑌 ,  𝑋 } )  =  ( ( glb ‘ 𝐾 ) ‘ { 𝑋 ,  𝑌 } ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( glb ‘ 𝐾 ) ‘ { 𝑌 ,  𝑋 } )  =  ( ( glb ‘ 𝐾 ) ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 6 |  | eqid | ⊢ ( glb ‘ 𝐾 )  =  ( glb ‘ 𝐾 ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  𝑉 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 6 2 7 8 9 | meetval | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  ∧  𝑋 )  =  ( ( glb ‘ 𝐾 ) ‘ { 𝑌 ,  𝑋 } ) ) | 
						
							| 11 | 6 2 7 9 8 | meetval | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 )  =  ( ( glb ‘ 𝐾 ) ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 12 | 5 10 11 | 3eqtr4rd | ⊢ ( ( 𝐾  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∧  𝑌 )  =  ( 𝑌  ∧  𝑋 ) ) |