| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							meetval2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							meetval2.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							meetval2.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							meetval2.k | 
							⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							meetval2.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							meetval2.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							meetlem.e | 
							⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  dom   ∧  )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( glb ‘ 𝐾 )  =  ( glb ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								8 3 4 5 6
							 | 
							meetdef | 
							⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∧   ↔  { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							biid | 
							⊢ ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) )  | 
						
						
							| 11 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 ) )  →  𝐾  ∈  𝑉 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 ) )  →  { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 ) )  | 
						
						
							| 13 | 
							
								1 2 8 10 11 12
							 | 
							glbeu | 
							⊢ ( ( 𝜑  ∧  { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 ) )  →  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							⊢ ( 𝜑  →  ( { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 )  →  ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6
							 | 
							meetval2lem | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 16 | 
							
								5 6 15
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							reubidv | 
							⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑥  ≤  𝑦  ∧  ∀ 𝑧  ∈  𝐵 ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } 𝑧  ≤  𝑦  →  𝑧  ≤  𝑥 ) )  ↔  ∃! 𝑥  ∈  𝐵 ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							sylibd | 
							⊢ ( 𝜑  →  ( { 𝑋 ,  𝑌 }  ∈  dom  ( glb ‘ 𝐾 )  →  ∃! 𝑥  ∈  𝐵 ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							sylbid | 
							⊢ ( 𝜑  →  ( 〈 𝑋 ,  𝑌 〉  ∈  dom   ∧   →  ∃! 𝑥  ∈  𝐵 ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃! 𝑥  ∈  𝐵 ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ( ( 𝑧  ≤  𝑋  ∧  𝑧  ≤  𝑌 )  →  𝑧  ≤  𝑥 ) ) )  |