Metamath Proof Explorer


Theorem meeteu

Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetval2.b 𝐵 = ( Base ‘ 𝐾 )
meetval2.l = ( le ‘ 𝐾 )
meetval2.m = ( meet ‘ 𝐾 )
meetval2.k ( 𝜑𝐾𝑉 )
meetval2.x ( 𝜑𝑋𝐵 )
meetval2.y ( 𝜑𝑌𝐵 )
meetlem.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
Assertion meeteu ( 𝜑 → ∃! 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 meetval2.b 𝐵 = ( Base ‘ 𝐾 )
2 meetval2.l = ( le ‘ 𝐾 )
3 meetval2.m = ( meet ‘ 𝐾 )
4 meetval2.k ( 𝜑𝐾𝑉 )
5 meetval2.x ( 𝜑𝑋𝐵 )
6 meetval2.y ( 𝜑𝑌𝐵 )
7 meetlem.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
8 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
9 8 3 4 5 6 meetdef ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) )
10 biid ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) )
11 4 adantr ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → 𝐾𝑉 )
12 simpr ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) )
13 1 2 8 10 11 12 glbeu ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → ∃! 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) )
14 13 ex ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ) )
15 1 2 3 4 5 6 meetval2lem ( ( 𝑋𝐵𝑌𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
16 5 6 15 syl2anc ( 𝜑 → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
17 16 reubidv ( 𝜑 → ( ∃! 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ∃! 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
18 14 17 sylibd ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
19 9 18 sylbid ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ dom → ∃! 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
20 7 19 mpd ( 𝜑 → ∃! 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) )