Step |
Hyp |
Ref |
Expression |
1 |
|
meetval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
meetval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
meetval2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
meetval2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
5 |
|
meetval2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
meetval2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
meetlem.e |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) |
8 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
9 |
8 3 4 5 6
|
meetdef |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
10 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → 𝐾 ∈ 𝑉 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) |
13 |
1 2 8 10 11 12
|
glbeu |
⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
15 |
1 2 3 4 5 6
|
meetval2lem |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
16 |
5 6 15
|
syl2anc |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
17 |
16
|
reubidv |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
18 |
14 17
|
sylibd |
⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
19 |
9 18
|
sylbid |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
20 |
7 19
|
mpd |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |