Metamath Proof Explorer


Theorem meetle

Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetle.b 𝐵 = ( Base ‘ 𝐾 )
meetle.l = ( le ‘ 𝐾 )
meetle.m = ( meet ‘ 𝐾 )
meetle.k ( 𝜑𝐾 ∈ Poset )
meetle.x ( 𝜑𝑋𝐵 )
meetle.y ( 𝜑𝑌𝐵 )
meetle.z ( 𝜑𝑍𝐵 )
meetle.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
Assertion meetle ( 𝜑 → ( ( 𝑍 𝑋𝑍 𝑌 ) ↔ 𝑍 ( 𝑋 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 meetle.b 𝐵 = ( Base ‘ 𝐾 )
2 meetle.l = ( le ‘ 𝐾 )
3 meetle.m = ( meet ‘ 𝐾 )
4 meetle.k ( 𝜑𝐾 ∈ Poset )
5 meetle.x ( 𝜑𝑋𝐵 )
6 meetle.y ( 𝜑𝑌𝐵 )
7 meetle.z ( 𝜑𝑍𝐵 )
8 meetle.e ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom )
9 breq1 ( 𝑧 = 𝑍 → ( 𝑧 𝑋𝑍 𝑋 ) )
10 breq1 ( 𝑧 = 𝑍 → ( 𝑧 𝑌𝑍 𝑌 ) )
11 9 10 anbi12d ( 𝑧 = 𝑍 → ( ( 𝑧 𝑋𝑧 𝑌 ) ↔ ( 𝑍 𝑋𝑍 𝑌 ) ) )
12 breq1 ( 𝑧 = 𝑍 → ( 𝑧 ( 𝑋 𝑌 ) ↔ 𝑍 ( 𝑋 𝑌 ) ) )
13 11 12 imbi12d ( 𝑧 = 𝑍 → ( ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 ( 𝑋 𝑌 ) ) ↔ ( ( 𝑍 𝑋𝑍 𝑌 ) → 𝑍 ( 𝑋 𝑌 ) ) ) )
14 1 2 3 4 5 6 8 meetlem ( 𝜑 → ( ( ( 𝑋 𝑌 ) 𝑋 ∧ ( 𝑋 𝑌 ) 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 ( 𝑋 𝑌 ) ) ) )
15 14 simprd ( 𝜑 → ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 ( 𝑋 𝑌 ) ) )
16 13 15 7 rspcdva ( 𝜑 → ( ( 𝑍 𝑋𝑍 𝑌 ) → 𝑍 ( 𝑋 𝑌 ) ) )
17 1 2 3 4 5 6 8 lemeet1 ( 𝜑 → ( 𝑋 𝑌 ) 𝑋 )
18 1 3 4 5 6 8 meetcl ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )
19 1 2 postr ( ( 𝐾 ∈ Poset ∧ ( 𝑍𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑋𝐵 ) ) → ( ( 𝑍 ( 𝑋 𝑌 ) ∧ ( 𝑋 𝑌 ) 𝑋 ) → 𝑍 𝑋 ) )
20 4 7 18 5 19 syl13anc ( 𝜑 → ( ( 𝑍 ( 𝑋 𝑌 ) ∧ ( 𝑋 𝑌 ) 𝑋 ) → 𝑍 𝑋 ) )
21 17 20 mpan2d ( 𝜑 → ( 𝑍 ( 𝑋 𝑌 ) → 𝑍 𝑋 ) )
22 1 2 3 4 5 6 8 lemeet2 ( 𝜑 → ( 𝑋 𝑌 ) 𝑌 )
23 1 2 postr ( ( 𝐾 ∈ Poset ∧ ( 𝑍𝐵 ∧ ( 𝑋 𝑌 ) ∈ 𝐵𝑌𝐵 ) ) → ( ( 𝑍 ( 𝑋 𝑌 ) ∧ ( 𝑋 𝑌 ) 𝑌 ) → 𝑍 𝑌 ) )
24 4 7 18 6 23 syl13anc ( 𝜑 → ( ( 𝑍 ( 𝑋 𝑌 ) ∧ ( 𝑋 𝑌 ) 𝑌 ) → 𝑍 𝑌 ) )
25 22 24 mpan2d ( 𝜑 → ( 𝑍 ( 𝑋 𝑌 ) → 𝑍 𝑌 ) )
26 21 25 jcad ( 𝜑 → ( 𝑍 ( 𝑋 𝑌 ) → ( 𝑍 𝑋𝑍 𝑌 ) ) )
27 16 26 impbid ( 𝜑 → ( ( 𝑍 𝑋𝑍 𝑌 ) ↔ 𝑍 ( 𝑋 𝑌 ) ) )