Metamath Proof Explorer


Theorem meetval2

Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011) (Revised by NM, 11-Sep-2018)

Ref Expression
Hypotheses meetval2.b 𝐵 = ( Base ‘ 𝐾 )
meetval2.l = ( le ‘ 𝐾 )
meetval2.m = ( meet ‘ 𝐾 )
meetval2.k ( 𝜑𝐾𝑉 )
meetval2.x ( 𝜑𝑋𝐵 )
meetval2.y ( 𝜑𝑌𝐵 )
Assertion meetval2 ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 meetval2.b 𝐵 = ( Base ‘ 𝐾 )
2 meetval2.l = ( le ‘ 𝐾 )
3 meetval2.m = ( meet ‘ 𝐾 )
4 meetval2.k ( 𝜑𝐾𝑉 )
5 meetval2.x ( 𝜑𝑋𝐵 )
6 meetval2.y ( 𝜑𝑌𝐵 )
7 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
8 7 3 4 5 6 meetval ( 𝜑 → ( 𝑋 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) )
9 biid ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) )
10 5 6 prssd ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝐵 )
11 1 2 7 9 4 10 glbval ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) = ( 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ) )
12 1 2 3 4 5 6 meetval2lem ( ( 𝑋𝐵𝑌𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ↔ ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
13 12 riotabidv ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ) = ( 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
14 5 6 13 syl2anc ( 𝜑 → ( 𝑥𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 𝑦 ∧ ∀ 𝑧𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 𝑦𝑧 𝑥 ) ) ) = ( 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )
15 8 11 14 3eqtrd ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑥𝐵 ( ( 𝑥 𝑋𝑥 𝑌 ) ∧ ∀ 𝑧𝐵 ( ( 𝑧 𝑋𝑧 𝑌 ) → 𝑧 𝑥 ) ) ) )