Step |
Hyp |
Ref |
Expression |
1 |
|
dfmembpart2 |
⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
2 |
|
n0el2 |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
3 |
2
|
biimpi |
⊢ ( ¬ ∅ ∈ 𝐴 → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
4 |
3
|
ad2antll |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → dom ( ◡ E ↾ 𝐴 ) = 𝐴 ) |
5 |
4
|
eleq2d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ↔ 𝑢 ∈ 𝐴 ) ) |
6 |
|
eldisjlem19 |
⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
7 |
6
|
adantrd |
⊢ ( 𝐵 ∈ 𝑉 → ( ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
8 |
7
|
imp |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
9 |
8
|
expd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
10 |
5 9
|
sylbird |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
11 |
1 10
|
sylan2b |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ MembPart 𝐴 ) → ( 𝑢 ∈ 𝐴 → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
12 |
11
|
impd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ MembPart 𝐴 ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
13 |
12
|
ex |
⊢ ( 𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |