Metamath Proof Explorer


Theorem mendassa

Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses mendassa.a 𝐴 = ( MEndo ‘ 𝑀 )
mendassa.s 𝑆 = ( Scalar ‘ 𝑀 )
Assertion mendassa ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 mendassa.a 𝐴 = ( MEndo ‘ 𝑀 )
2 mendassa.s 𝑆 = ( Scalar ‘ 𝑀 )
3 1 mendbas ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 )
4 3 a1i ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) )
5 1 2 mendsca 𝑆 = ( Scalar ‘ 𝐴 )
6 5 a1i ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝑆 = ( Scalar ‘ 𝐴 ) )
7 eqidd ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) )
8 eqidd ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( ·𝑠𝐴 ) = ( ·𝑠𝐴 ) )
9 eqidd ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( .r𝐴 ) = ( .r𝐴 ) )
10 1 2 mendlmod ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ LMod )
11 1 mendring ( 𝑀 ∈ LMod → 𝐴 ∈ Ring )
12 11 adantr ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ Ring )
13 simpr3 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) )
14 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
15 14 14 lmhmf ( 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) )
16 13 15 syl ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) )
17 16 ffvelcdmda ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑧𝑣 ) ∈ ( Base ‘ 𝑀 ) )
18 16 feqmptd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧𝑣 ) ) )
19 simpr1 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
20 simpr2 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) )
21 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
22 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
23 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
24 1 21 3 2 22 14 23 mendvsca ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) )
25 19 20 24 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) )
26 fvexd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V )
27 simplr1 ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
28 fvexd ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦𝑤 ) ∈ V )
29 fconstmpt ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 )
30 29 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) )
31 14 14 lmhmf ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) )
32 20 31 syl ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) )
33 32 feqmptd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦𝑤 ) ) )
34 26 27 28 30 33 offval2 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑦 ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦𝑤 ) ) ) )
35 25 34 eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦𝑤 ) ) ) )
36 fveq2 ( 𝑤 = ( 𝑧𝑣 ) → ( 𝑦𝑤 ) = ( 𝑦 ‘ ( 𝑧𝑣 ) ) )
37 36 oveq2d ( 𝑤 = ( 𝑧𝑣 ) → ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦𝑤 ) ) = ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
38 17 18 35 37 fmptco ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∘ 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) ) )
39 simplr1 ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
40 fvexd ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑧𝑣 ) ) ∈ V )
41 fconstmpt ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 )
42 41 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) )
43 eqid ( .r𝐴 ) = ( .r𝐴 )
44 1 3 43 mendmulr ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r𝐴 ) 𝑧 ) = ( 𝑦𝑧 ) )
45 20 13 44 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r𝐴 ) 𝑧 ) = ( 𝑦𝑧 ) )
46 fcompt ( ( 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ∧ 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) → ( 𝑦𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
47 32 16 46 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
48 45 47 eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r𝐴 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
49 26 39 40 42 48 offval2 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) ) )
50 38 49 eqtr4d ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∘ 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
51 10 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝐴 ∈ LMod )
52 3 5 23 22 lmodvscl ( ( 𝐴 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) )
53 51 19 20 52 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) )
54 1 3 43 mendmulr ( ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ( .r𝐴 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∘ 𝑧 ) )
55 53 13 54 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ( .r𝐴 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ∘ 𝑧 ) )
56 12 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝐴 ∈ Ring )
57 3 43 ringcl ( ( 𝐴 ∈ Ring ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) )
58 56 20 13 57 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) )
59 1 21 3 2 22 14 23 mendvsca ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑦 ( .r𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠𝐴 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
60 19 58 59 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
61 50 55 60 3eqtr4d ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠𝐴 ) 𝑦 ) ( .r𝐴 ) 𝑧 ) = ( 𝑥 ( ·𝑠𝐴 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
62 simplr2 ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) )
63 2 22 14 21 21 lmhmlin ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑧𝑣 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) = ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
64 62 39 17 63 syl3anc ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) = ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) )
65 64 mpteq2dva ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑦 ‘ ( 𝑧𝑣 ) ) ) ) )
66 simplll ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑀 ∈ LMod )
67 14 2 21 22 lmodvscl ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑧𝑣 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ∈ ( Base ‘ 𝑀 ) )
68 66 39 17 67 syl3anc ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ∈ ( Base ‘ 𝑀 ) )
69 1 21 3 2 22 14 23 mendvsca ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑧 ) )
70 19 13 69 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑧 ) )
71 fvexd ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑧𝑣 ) ∈ V )
72 26 39 71 42 18 offval2 ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) )
73 70 72 eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) )
74 fveq2 ( 𝑤 = ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) → ( 𝑦𝑤 ) = ( 𝑦 ‘ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) )
75 68 73 33 74 fmptco ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑥 ( ·𝑠𝑀 ) ( 𝑧𝑣 ) ) ) ) )
76 65 75 49 3eqtr4d ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠𝑀 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
77 3 5 23 22 lmodvscl ( ( 𝐴 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) )
78 51 19 13 77 syl3anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) )
79 1 3 43 mendmulr ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r𝐴 ) ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) = ( 𝑦 ∘ ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) )
80 20 78 79 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r𝐴 ) ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) = ( 𝑦 ∘ ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) )
81 76 80 60 3eqtr4d ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r𝐴 ) ( 𝑥 ( ·𝑠𝐴 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠𝐴 ) ( 𝑦 ( .r𝐴 ) 𝑧 ) ) )
82 4 6 7 8 9 10 12 61 81 isassad ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ AssAlg )