| Step |
Hyp |
Ref |
Expression |
| 1 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
| 2 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
| 4 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
| 6 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
| 7 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) |
| 9 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) → ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
| 11 |
5 10
|
ax-mp |
⊢ ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
| 12 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
| 13 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
| 15 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) |
| 17 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜒 ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) ) |
| 18 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜒 ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) ) → ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) |
| 20 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) → ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) |
| 22 |
16 21
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) |
| 23 |
11 22
|
ax-mp |
⊢ ( 𝜑 → ( ⊥ → 𝜒 ) ) |