Metamath Proof Explorer


Theorem merco1lem13

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem13 ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → 𝜏 ) → ( 𝜑𝜏 ) )

Proof

Step Hyp Ref Expression
1 merco1 ( ( ( ( ( 𝜓𝜑 ) → ( 𝜒 → ⊥ ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) )
2 merco1lem4 ( ( ( ( ( ( 𝜓𝜑 ) → ( 𝜒 → ⊥ ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( 𝜑 → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) )
3 1 2 ax-mp ( 𝜑 → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) )
4 merco1lem12 ( ( 𝜑 → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( ( ( ( 𝜏𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) )
5 3 4 ax-mp ( ( ( ( 𝜏𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) )
6 merco1 ( ( ( ( ( 𝜏𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜑 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) ) → ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → 𝜏 ) → ( 𝜑𝜏 ) ) )
7 5 6 ax-mp ( ( ( ( 𝜑𝜓 ) → ( 𝜒𝜓 ) ) → 𝜏 ) → ( 𝜑𝜏 ) )