Metamath Proof Explorer


Theorem merco1lem15

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem15 ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜒𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 merco1lem14 ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → ( 𝜒𝜓 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) )
2 merco1lem13 ( ( ( ( ( 𝜑𝜓 ) → 𝜓 ) → ( 𝜒𝜓 ) ) → ( 𝜑 → ( 𝜒𝜓 ) ) ) → ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜒𝜓 ) ) ) )
3 1 2 ax-mp ( ( 𝜑𝜓 ) → ( 𝜑 → ( 𝜒𝜓 ) ) )