Step |
Hyp |
Ref |
Expression |
1 |
|
merco1lem2 |
⊢ ( ( ( 𝜑 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) ) |
2 |
|
retbwax2 |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) ) |
3 |
|
merco1lem2 |
⊢ ( ( ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) → ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) ) → ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) ) → ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) ) |
5 |
1 4
|
ax-mp |
⊢ ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) |
6 |
|
merco1lem2 |
⊢ ( ( ( 𝜒 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) ) |
7 |
|
retbwax2 |
⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) → ( ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) ) ) |
8 |
|
merco1lem2 |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) → ( ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) ) → ( ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ( ( 𝜒 → 𝜑 ) → ⊥ ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) ) → ( ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) ) ) |
10 |
6 9
|
ax-mp |
⊢ ( ( 𝜑 → ( ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → 𝜑 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) ) |
11 |
5 10
|
ax-mp |
⊢ ( ( ( 𝜑 → 𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒 → 𝜑 ) ) |