Metamath Proof Explorer


Theorem merco1lem3

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem3 ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 merco1lem2 ( ( ( 𝜑𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) )
2 retbwax2 ( ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) → ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) )
3 merco1lem2 ( ( ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) → ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) ) → ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) ) )
4 2 3 ax-mp ( ( ( ( 𝜑𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ⊥ ) ) → ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) )
5 1 4 ax-mp ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) )
6 merco1lem2 ( ( ( 𝜒𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) )
7 retbwax2 ( ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) → ( ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) ) )
8 merco1lem2 ( ( ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) → ( ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) ) ) → ( ( ( ( 𝜒𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) ) → ( ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) ) ) )
9 7 8 ax-mp ( ( ( ( 𝜒𝜑 ) → ⊥ ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ⊥ ) ) → ( ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) ) )
10 6 9 ax-mp ( ( 𝜑 → ( ( ( 𝜑𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑𝜑 ) ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) ) )
11 5 10 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜒 → ⊥ ) ) → ( 𝜒𝜑 ) )