Metamath Proof Explorer


Theorem merco1lem4

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem4 ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 merco1lem3 ( ( ( ( 𝜓 → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜒𝜑 ) → ⊥ ) ) → ( ( 𝜒𝜑 ) → ( 𝜓 → ⊥ ) ) )
2 merco1 ( ( ( ( ( 𝜓 → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜒𝜑 ) → ⊥ ) ) → ( ( 𝜒𝜑 ) → ( 𝜓 → ⊥ ) ) ) → ( ( ( ( 𝜒𝜑 ) → ( 𝜓 → ⊥ ) ) → 𝜓 ) → ( 𝜑𝜓 ) ) )
3 1 2 ax-mp ( ( ( ( 𝜒𝜑 ) → ( 𝜓 → ⊥ ) ) → 𝜓 ) → ( 𝜑𝜓 ) )
4 merco1 ( ( ( ( ( 𝜒𝜑 ) → ( 𝜓 → ⊥ ) ) → 𝜓 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) ) )
5 3 4 ax-mp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( 𝜓𝜒 ) )