| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( 𝜓  →  ( 𝜃  →  𝜒 ) )  →  ( ( ⊥  →  𝜑 )  →  ⊥ ) )  →  ( ( ⊥  →  𝜓 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( ( 𝜓  →  ( 𝜃  →  𝜒 ) )  →  ( ( ⊥  →  𝜑 )  →  ⊥ ) )  →  ( ( ⊥  →  𝜓 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) ) )  →  ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							⊢ ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) )  →  ( ( ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) ) ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							ax-mp | 
							⊢ ( ( ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							merco2 | 
							⊢ ( ( ( ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ⊥  →  𝜑 )  →  ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) ) ) )  →  ( ( ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ax-mp | 
							⊢ ( ( ( ( 𝜒  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  𝜓 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							ax-mp | 
							⊢ ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							ax-mp | 
							⊢ ( ( ( ( 𝜑  →  𝜑 )  →  ( ( ⊥  →  𝜑 )  →  𝜑 ) )  →  ( ( 𝜑  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							ax-mp | 
							⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜒 )  →  ( 𝜓  →  ( 𝜃  →  𝜒 ) ) )  |