Metamath Proof Explorer


Theorem mercolem4

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem4 ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) )
2 merco2 ( ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) )
3 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃𝜒 ) ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) )
4 mercolem1 ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃𝜒 ) ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → ( ( ( ⊥ → 𝜑 ) → ( 𝜃𝜒 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) )
5 3 4 ax-mp ( ( ( ⊥ → 𝜑 ) → ( 𝜃𝜒 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) )
6 mercolem1 ( ( ( ( ⊥ → 𝜑 ) → ( 𝜃𝜒 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) → ( ( 𝜃𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) ) )
7 5 6 ax-mp ( ( 𝜃𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) )
8 merco2 ( ( ( 𝜃𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) ) → ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) )
9 7 8 ax-mp ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) )
10 mercolem3 ( ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) → ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) )
11 9 10 ax-mp ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) )
12 merco2 ( ( ( ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) → ( ( ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) ) ) )
13 11 12 ax-mp ( ( ( ( ( 𝜂𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) ) )
14 2 13 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) ) )
15 1 14 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) ) )
16 1 15 ax-mp ( ( 𝜃 → ( 𝜂𝜑 ) ) → ( ( ( 𝜃𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂𝜑 ) ) ) )