Step |
Hyp |
Ref |
Expression |
1 |
|
merco2 |
⊢ ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) |
2 |
|
merco2 |
⊢ ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
3 |
|
merco2 |
⊢ ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) |
4 |
|
mercolem1 |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
6 |
|
mercolem1 |
⊢ ( ( ( ( ⊥ → 𝜑 ) → ( 𝜃 → 𝜒 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
8 |
|
merco2 |
⊢ ( ( ( 𝜃 → 𝜒 ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) → ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) |
10 |
|
mercolem3 |
⊢ ( ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) → ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) |
12 |
|
merco2 |
⊢ ( ( ( ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) ) → ( ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( ( ( 𝜂 → 𝜑 ) → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) ) |
14 |
2 13
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) ) |
15 |
1 14
|
ax-mp |
⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) ) |
16 |
1 15
|
ax-mp |
⊢ ( ( 𝜃 → ( 𝜂 → 𝜑 ) ) → ( ( ( 𝜃 → 𝜒 ) → 𝜑 ) → ( 𝜏 → ( 𝜂 → 𝜑 ) ) ) ) |