Metamath Proof Explorer


Theorem mercolem5

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem5 ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) )
2 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) )
3 mercolem1 ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) → ( ( ( ⊥ → 𝜑 ) → 𝜃 ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) )
4 2 3 ax-mp ( ( ( ⊥ → 𝜑 ) → 𝜃 ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) )
5 mercolem2 ( ( ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) )
6 merco2 ( ( ( ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) → 𝜃 ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜃 ) ) ) → ( ( ( ( ⊥ → 𝜑 ) → 𝜃 ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) ) ) )
7 5 6 ax-mp ( ( ( ( ⊥ → 𝜑 ) → 𝜃 ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) ) )
8 4 7 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) ) )
9 1 8 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) ) )
10 1 9 ax-mp ( 𝜃 → ( ( 𝜃𝜑 ) → ( 𝜏 → ( 𝜒𝜑 ) ) ) )