Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 𝑃 ∈ ℤ ) |
2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
3 |
2
|
numexp1 |
⊢ ( 2 ↑ 1 ) = 2 |
4 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
5 |
3 4
|
eqtri |
⊢ ( 2 ↑ 1 ) = ( 1 + 1 ) |
6 |
|
prmuz2 |
⊢ ( ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
8 |
|
eluz2gt1 |
⊢ ( ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) → 1 < ( ( 2 ↑ 𝑃 ) − 1 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 1 < ( ( 2 ↑ 𝑃 ) − 1 ) ) |
10 |
|
1red |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 1 ∈ ℝ ) |
11 |
|
2re |
⊢ 2 ∈ ℝ |
12 |
11
|
a1i |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 2 ∈ ℝ ) |
13 |
|
2ne0 |
⊢ 2 ≠ 0 |
14 |
13
|
a1i |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 2 ≠ 0 ) |
15 |
12 14 1
|
reexpclzd |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( 2 ↑ 𝑃 ) ∈ ℝ ) |
16 |
10 10 15
|
ltaddsubd |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( ( 1 + 1 ) < ( 2 ↑ 𝑃 ) ↔ 1 < ( ( 2 ↑ 𝑃 ) − 1 ) ) ) |
17 |
9 16
|
mpbird |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( 1 + 1 ) < ( 2 ↑ 𝑃 ) ) |
18 |
5 17
|
eqbrtrid |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( 2 ↑ 1 ) < ( 2 ↑ 𝑃 ) ) |
19 |
|
1zzd |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 1 ∈ ℤ ) |
20 |
|
1lt2 |
⊢ 1 < 2 |
21 |
20
|
a1i |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 1 < 2 ) |
22 |
12 19 1 21
|
ltexp2d |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( 1 < 𝑃 ↔ ( 2 ↑ 1 ) < ( 2 ↑ 𝑃 ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 1 < 𝑃 ) |
24 |
|
eluz2b1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℤ ∧ 1 < 𝑃 ) ) |
25 |
1 23 24
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
26 |
|
simpllr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) |
27 |
|
prmnn |
⊢ ( ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℕ ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℕ ) |
29 |
28
|
nncnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℂ ) |
30 |
|
2nn |
⊢ 2 ∈ ℕ |
31 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
33 |
|
eluz2nn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∈ ℕ ) |
35 |
34
|
nnnn0d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∈ ℕ0 ) |
36 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
37 |
30 35 36
|
sylancr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
38 |
37
|
nnzd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) ∈ ℤ ) |
39 |
|
peano2zm |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℤ → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
40 |
38 39
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
41 |
40
|
zred |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℂ ) |
43 |
|
0red |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 0 ∈ ℝ ) |
44 |
|
1red |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 ∈ ℝ ) |
45 |
|
0lt1 |
⊢ 0 < 1 |
46 |
45
|
a1i |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 0 < 1 ) |
47 |
|
eluz2gt1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑘 ) |
48 |
32 47
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 < 𝑘 ) |
49 |
11
|
a1i |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 2 ∈ ℝ ) |
50 |
|
1zzd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 ∈ ℤ ) |
51 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) → 𝑘 ∈ ℤ ) |
52 |
51
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∈ ℤ ) |
53 |
20
|
a1i |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 < 2 ) |
54 |
49 50 52 53
|
ltexp2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 1 < 𝑘 ↔ ( 2 ↑ 1 ) < ( 2 ↑ 𝑘 ) ) ) |
55 |
48 54
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 1 ) < ( 2 ↑ 𝑘 ) ) |
56 |
5 55
|
eqbrtrrid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 1 + 1 ) < ( 2 ↑ 𝑘 ) ) |
57 |
37
|
nnred |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) ∈ ℝ ) |
58 |
44 44 57
|
ltaddsubd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 1 + 1 ) < ( 2 ↑ 𝑘 ) ↔ 1 < ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
59 |
56 58
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 < ( ( 2 ↑ 𝑘 ) − 1 ) ) |
60 |
43 44 41 46 59
|
lttrd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 0 < ( ( 2 ↑ 𝑘 ) − 1 ) ) |
61 |
|
elnnz |
⊢ ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℕ ↔ ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
62 |
40 60 61
|
sylanbrc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℕ ) |
63 |
62
|
nnne0d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ≠ 0 ) |
64 |
29 42 63
|
divcan2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑘 ) − 1 ) · ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) = ( ( 2 ↑ 𝑃 ) − 1 ) ) |
65 |
64 26
|
eqeltrd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑘 ) − 1 ) · ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ∈ ℙ ) |
66 |
|
eluz2b2 |
⊢ ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℕ ∧ 1 < ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
67 |
62 59 66
|
sylanbrc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
68 |
37
|
nncnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
69 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
70 |
|
subeq0 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 ↑ 𝑘 ) − 1 ) = 0 ↔ ( 2 ↑ 𝑘 ) = 1 ) ) |
71 |
68 69 70
|
sylancl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑘 ) − 1 ) = 0 ↔ ( 2 ↑ 𝑘 ) = 1 ) ) |
72 |
71
|
necon3bid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑘 ) − 1 ) ≠ 0 ↔ ( 2 ↑ 𝑘 ) ≠ 1 ) ) |
73 |
63 72
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) ≠ 1 ) |
74 |
|
simpr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∥ 𝑃 ) |
75 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
76 |
25 75
|
syl |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 𝑃 ∈ ℕ ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑃 ∈ ℕ ) |
78 |
|
nndivdvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∥ 𝑃 ↔ ( 𝑃 / 𝑘 ) ∈ ℕ ) ) |
79 |
77 34 78
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 𝑘 ∥ 𝑃 ↔ ( 𝑃 / 𝑘 ) ∈ ℕ ) ) |
80 |
74 79
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 𝑃 / 𝑘 ) ∈ ℕ ) |
81 |
80
|
nnnn0d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 𝑃 / 𝑘 ) ∈ ℕ0 ) |
82 |
68 73 81
|
geoser |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) ( ( 2 ↑ 𝑘 ) ↑ 𝑛 ) = ( ( 1 − ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) / ( 1 − ( 2 ↑ 𝑘 ) ) ) ) |
83 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑃 ) ∈ ℝ ) |
84 |
83
|
recnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑃 ) ∈ ℂ ) |
85 |
|
negsubdi2 |
⊢ ( ( ( 2 ↑ 𝑃 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( 2 ↑ 𝑃 ) − 1 ) = ( 1 − ( 2 ↑ 𝑃 ) ) ) |
86 |
84 69 85
|
sylancl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → - ( ( 2 ↑ 𝑃 ) − 1 ) = ( 1 − ( 2 ↑ 𝑃 ) ) ) |
87 |
77
|
nncnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑃 ∈ ℂ ) |
88 |
34
|
nncnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ∈ ℂ ) |
89 |
34
|
nnne0d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 ≠ 0 ) |
90 |
87 88 89
|
divcan2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 𝑘 · ( 𝑃 / 𝑘 ) ) = 𝑃 ) |
91 |
90
|
oveq2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ ( 𝑘 · ( 𝑃 / 𝑘 ) ) ) = ( 2 ↑ 𝑃 ) ) |
92 |
49
|
recnd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 2 ∈ ℂ ) |
93 |
92 81 35
|
expmuld |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ ( 𝑘 · ( 𝑃 / 𝑘 ) ) ) = ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) |
94 |
91 93
|
eqtr3d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑃 ) = ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) |
95 |
94
|
oveq2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 1 − ( 2 ↑ 𝑃 ) ) = ( 1 − ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) ) |
96 |
86 95
|
eqtrd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → - ( ( 2 ↑ 𝑃 ) − 1 ) = ( 1 − ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) ) |
97 |
|
negsubdi2 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( 2 ↑ 𝑘 ) − 1 ) = ( 1 − ( 2 ↑ 𝑘 ) ) ) |
98 |
68 69 97
|
sylancl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → - ( ( 2 ↑ 𝑘 ) − 1 ) = ( 1 − ( 2 ↑ 𝑘 ) ) ) |
99 |
96 98
|
oveq12d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( - ( ( 2 ↑ 𝑃 ) − 1 ) / - ( ( 2 ↑ 𝑘 ) − 1 ) ) = ( ( 1 − ( ( 2 ↑ 𝑘 ) ↑ ( 𝑃 / 𝑘 ) ) ) / ( 1 − ( 2 ↑ 𝑘 ) ) ) ) |
100 |
29 42 63
|
div2negd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( - ( ( 2 ↑ 𝑃 ) − 1 ) / - ( ( 2 ↑ 𝑘 ) − 1 ) ) = ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
101 |
82 99 100
|
3eqtr2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) ( ( 2 ↑ 𝑘 ) ↑ 𝑛 ) = ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
102 |
|
fzfid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) ∈ Fin ) |
103 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) → 𝑛 ∈ ℕ0 ) |
104 |
|
zexpcl |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) ↑ 𝑛 ) ∈ ℤ ) |
105 |
38 103 104
|
syl2an |
⊢ ( ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) ∧ 𝑛 ∈ ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) ) → ( ( 2 ↑ 𝑘 ) ↑ 𝑛 ) ∈ ℤ ) |
106 |
102 105
|
fsumzcl |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → Σ 𝑛 ∈ ( 0 ... ( ( 𝑃 / 𝑘 ) − 1 ) ) ( ( 2 ↑ 𝑘 ) ↑ 𝑛 ) ∈ ℤ ) |
107 |
101 106
|
eqeltrrd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ∈ ℤ ) |
108 |
42
|
mulid2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 1 · ( ( 2 ↑ 𝑘 ) − 1 ) ) = ( ( 2 ↑ 𝑘 ) − 1 ) ) |
109 |
|
2z |
⊢ 2 ∈ ℤ |
110 |
|
elfzm11 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) |
111 |
109 1 110
|
sylancr |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ( 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) |
112 |
111
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) → ( 𝑘 ∈ ℤ ∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) |
113 |
112
|
simp3d |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) → 𝑘 < 𝑃 ) |
114 |
113
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑘 < 𝑃 ) |
115 |
1
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 𝑃 ∈ ℤ ) |
116 |
49 52 115 53
|
ltexp2d |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 𝑘 < 𝑃 ↔ ( 2 ↑ 𝑘 ) < ( 2 ↑ 𝑃 ) ) ) |
117 |
114 116
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 2 ↑ 𝑘 ) < ( 2 ↑ 𝑃 ) ) |
118 |
57 83 44 117
|
ltsub1dd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑘 ) − 1 ) < ( ( 2 ↑ 𝑃 ) − 1 ) ) |
119 |
108 118
|
eqbrtrd |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( 1 · ( ( 2 ↑ 𝑘 ) − 1 ) ) < ( ( 2 ↑ 𝑃 ) − 1 ) ) |
120 |
28
|
nnred |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℝ ) |
121 |
|
ltmuldiv |
⊢ ( ( 1 ∈ ℝ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℝ ∧ ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ℝ ∧ 0 < ( ( 2 ↑ 𝑘 ) − 1 ) ) ) → ( ( 1 · ( ( 2 ↑ 𝑘 ) − 1 ) ) < ( ( 2 ↑ 𝑃 ) − 1 ) ↔ 1 < ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ) |
122 |
44 120 41 60 121
|
syl112anc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( 1 · ( ( 2 ↑ 𝑘 ) − 1 ) ) < ( ( 2 ↑ 𝑃 ) − 1 ) ↔ 1 < ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ) |
123 |
119 122
|
mpbid |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → 1 < ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) |
124 |
|
eluz2b1 |
⊢ ( ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ∈ ℤ ∧ 1 < ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ) |
125 |
107 123 124
|
sylanbrc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
126 |
|
nprm |
⊢ ( ( ( ( 2 ↑ 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( ( ( 2 ↑ 𝑘 ) − 1 ) · ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ∈ ℙ ) |
127 |
67 125 126
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) ∧ 𝑘 ∥ 𝑃 ) → ¬ ( ( ( 2 ↑ 𝑘 ) − 1 ) · ( ( ( 2 ↑ 𝑃 ) − 1 ) / ( ( 2 ↑ 𝑘 ) − 1 ) ) ) ∈ ℙ ) |
128 |
65 127
|
pm2.65da |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) ∧ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ) → ¬ 𝑘 ∥ 𝑃 ) |
129 |
128
|
ralrimiva |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → ∀ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑘 ∥ 𝑃 ) |
130 |
|
isprm3 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑘 ∈ ( 2 ... ( 𝑃 − 1 ) ) ¬ 𝑘 ∥ 𝑃 ) ) |
131 |
25 129 130
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 2 ↑ 𝑃 ) − 1 ) ∈ ℙ ) → 𝑃 ∈ ℙ ) |