Step |
Hyp |
Ref |
Expression |
1 |
|
mertens.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
2 |
|
mertens.2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
3 |
|
mertens.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
4 |
|
mertens.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
5 |
|
mertens.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
6 |
|
mertens.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
7 |
|
mertens.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
8 |
|
mertens.8 |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
11 |
|
seqex |
⊢ seq 0 ( + , 𝐻 ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ V ) |
13 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
14 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝜑 ) |
15 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℕ0 ) |
16 |
14 15 3
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ ℂ ) |
17 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ↔ ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) ) |
19 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑖 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
24 |
20 23
|
sylib |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
26 |
|
fznn0sub |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
28 |
18 25 27
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
29 |
16 28
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
30 |
13 29
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
31 |
6 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
32 |
9 10 31
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) : ℕ0 ⟶ ℂ ) |
33 |
32
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ∈ ℂ ) |
34 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
35 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
36 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
37 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
38 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
39 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
43 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐺 ‘ 𝑙 ) = ( 𝐺 ‘ 𝑘 ) ) |
44 |
43
|
cbvsumv |
⊢ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
45 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑛 → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
46 |
45
|
sumeq1d |
⊢ ( 𝑖 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
47 |
44 46
|
eqtrid |
⊢ ( 𝑖 = 𝑛 → Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
48 |
47
|
fveq2d |
⊢ ( 𝑖 = 𝑛 → ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
49 |
48
|
eqeq2d |
⊢ ( 𝑖 = 𝑛 → ( 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
50 |
49
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
51 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
52 |
51
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
53 |
50 52
|
syl5bb |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
54 |
53
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) } = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } |
55 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) ) |
56 |
55
|
cbvsumv |
⊢ Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) = Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) |
57 |
56
|
oveq1i |
⊢ ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) = ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) |
58 |
57
|
oveq2i |
⊢ ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) = ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) |
59 |
58
|
breq2i |
⊢ ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
60 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) ) |
61 |
60
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
62 |
|
fvoveq1 |
⊢ ( 𝑢 = 𝑛 → ( ℤ≥ ‘ ( 𝑢 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
63 |
62
|
sumeq1d |
⊢ ( 𝑢 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
64 |
61 63
|
eqtrid |
⊢ ( 𝑢 = 𝑛 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝑢 = 𝑛 → ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
66 |
65
|
breq1d |
⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
67 |
59 66
|
syl5bb |
⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
68 |
67
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
69 |
68
|
anbi2i |
⊢ ( ( 𝑠 ∈ ℕ ∧ ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ) ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
70 |
34 35 36 37 38 39 40 41 42 54 69
|
mertenslem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) |
71 |
|
eluznn0 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → 𝑚 ∈ ℕ0 ) |
72 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
73 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) |
74 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → 𝑗 ∈ ℕ0 ) |
75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝑗 ∈ ℕ0 ) |
76 |
9 10 4 5 8
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
78 |
1 3
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
79 |
77 78
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
80 |
73 75 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
81 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( 𝑚 − 𝑗 ) ) ∈ Fin ) |
82 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝜑 ) |
83 |
74
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑗 ∈ ℕ0 ) |
84 |
82 83 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝐴 ∈ ℂ ) |
85 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) → 𝑘 ∈ ℕ0 ) |
86 |
85
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑘 ∈ ℕ0 ) |
87 |
82 86 19
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
88 |
84 87
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
89 |
81 88
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
90 |
72 80 89
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
91 |
73 75 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝐴 ∈ ℂ ) |
92 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
93 |
81 87
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
94 |
91 92 93
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
95 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) = ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) |
96 |
|
fznn0sub |
⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) |
98 |
|
peano2nn0 |
⊢ ( ( 𝑚 − 𝑗 ) ∈ ℕ0 → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) |
99 |
97 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) |
100 |
99
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℤ ) |
101 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝜑 ) |
102 |
|
eluznn0 |
⊢ ( ( ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
103 |
99 102
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
104 |
101 103 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
105 |
101 103 5
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝐵 ∈ ℂ ) |
106 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
107 |
73 4
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
108 |
73 5
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
109 |
107 108
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
110 |
9 99 109
|
iserex |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
111 |
106 110
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
112 |
95 100 104 105 111
|
isumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ∈ ℂ ) |
113 |
9 95 99 107 108 106
|
isumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
114 |
97
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℂ ) |
115 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
116 |
|
pncan |
⊢ ( ( ( 𝑚 − 𝑗 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) |
117 |
114 115 116
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) |
118 |
117
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) = ( 0 ... ( 𝑚 − 𝑗 ) ) ) |
119 |
118
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
120 |
82 86 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
121 |
120
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
122 |
119 121
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
123 |
122
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
124 |
113 123
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
125 |
93 112 124
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) |
126 |
125
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
127 |
3 77
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
128 |
1
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
129 |
127 128
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
130 |
73 75 129
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
131 |
81 91 87
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
132 |
130 131
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
133 |
94 126 132
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
134 |
133
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
135 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
136 |
135
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
137 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) |
138 |
|
ovex |
⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ V |
139 |
136 137 138
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
140 |
75 139
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
141 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
142 |
141 9
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
143 |
140 142 80
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
144 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
145 |
144
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
146 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) |
147 |
146
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
148 |
88
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑚 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
149 |
145 147 148
|
fsum0diag2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
150 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) |
151 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) |
152 |
151
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝑘 ∈ ℕ0 ) |
153 |
150 152 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
154 |
150 152 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
155 |
153 142 154
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
156 |
149 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
157 |
143 156
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) |
158 |
90 134 157
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
159 |
158
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) ) |
160 |
159
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
161 |
71 160
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
162 |
161
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
163 |
162
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
164 |
163
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
166 |
70 165
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
167 |
166
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
168 |
1
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) = ( abs ‘ 𝐴 ) ) |
169 |
2 168
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
170 |
9 10 169 78 7
|
abscvgcvg |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
171 |
9 10 1 3 170
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ ℕ0 𝐴 ) |
172 |
78
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
173 |
|
fveq2 |
⊢ ( 𝑗 = 𝑚 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑚 ) ) |
174 |
173
|
eleq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
175 |
174
|
rspccva |
⊢ ( ( ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
176 |
172 175
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
177 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
178 |
177
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
179 |
|
ovex |
⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ∈ V |
180 |
178 137 179
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
181 |
180
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
182 |
9 10 76 171 176 181
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) ) |
183 |
9 10 1 3 170
|
isumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 𝐴 ∈ ℂ ) |
184 |
76 183
|
mulcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) = ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
185 |
182 184
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
186 |
9 10 12 33 167 185
|
2clim |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |