| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 2 |
|
mertens.2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 3 |
|
mertens.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
mertens.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 5 |
|
mertens.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 6 |
|
mertens.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 7 |
|
mertens.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 8 |
|
mertens.8 |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 10 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 11 |
|
seqex |
⊢ seq 0 ( + , 𝐻 ) ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ V ) |
| 13 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 14 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝜑 ) |
| 15 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℕ0 ) |
| 16 |
14 15 3
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ ℂ ) |
| 17 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑖 = ( 𝑘 − 𝑗 ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ↔ ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) ) |
| 19 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) ) |
| 23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 24 |
20 23
|
sylib |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ∀ 𝑖 ∈ ℕ0 ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 26 |
|
fznn0sub |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 28 |
18 25 27
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 29 |
16 28
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 30 |
13 29
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 31 |
6 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) ∈ ℂ ) |
| 32 |
9 10 31
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) : ℕ0 ⟶ ℂ ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ∈ ℂ ) |
| 34 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 35 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 36 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 37 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 38 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 39 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 43 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐺 ‘ 𝑙 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 44 |
43
|
cbvsumv |
⊢ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
| 45 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑛 → ( ℤ≥ ‘ ( 𝑖 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 46 |
45
|
sumeq1d |
⊢ ( 𝑖 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 47 |
44 46
|
eqtrid |
⊢ ( 𝑖 = 𝑛 → Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝑖 = 𝑛 → ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 49 |
48
|
eqeq2d |
⊢ ( 𝑖 = 𝑛 → ( 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 50 |
49
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 51 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 52 |
51
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 53 |
50 52
|
bitrid |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 54 |
53
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑖 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑢 = ( abs ‘ Σ 𝑙 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ( 𝐺 ‘ 𝑙 ) ) } = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } |
| 55 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 56 |
55
|
cbvsumv |
⊢ Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) = Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) |
| 57 |
56
|
oveq1i |
⊢ ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) = ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) |
| 58 |
57
|
oveq2i |
⊢ ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) = ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) |
| 59 |
58
|
breq2i |
⊢ ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 61 |
60
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) |
| 62 |
|
fvoveq1 |
⊢ ( 𝑢 = 𝑛 → ( ℤ≥ ‘ ( 𝑢 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 63 |
62
|
sumeq1d |
⊢ ( 𝑢 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 64 |
61 63
|
eqtrid |
⊢ ( 𝑢 = 𝑛 → Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 65 |
64
|
fveq2d |
⊢ ( 𝑢 = 𝑛 → ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 66 |
65
|
breq1d |
⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 67 |
59 66
|
bitrid |
⊢ ( 𝑢 = 𝑛 → ( ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 68 |
67
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 69 |
68
|
anbi2i |
⊢ ( ( 𝑠 ∈ ℕ ∧ ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑢 + 1 ) ) ( 𝐺 ‘ 𝑖 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑖 ∈ ℕ0 ( 𝐾 ‘ 𝑖 ) + 1 ) ) ) ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝑥 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 70 |
34 35 36 37 38 39 40 41 42 54 69
|
mertenslem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) |
| 71 |
|
eluznn0 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → 𝑚 ∈ ℕ0 ) |
| 72 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
| 73 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) |
| 74 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → 𝑗 ∈ ℕ0 ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝑗 ∈ ℕ0 ) |
| 76 |
9 10 4 5 8
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 78 |
1 3
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 79 |
77 78
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 80 |
73 75 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 81 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( 𝑚 − 𝑗 ) ) ∈ Fin ) |
| 82 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝜑 ) |
| 83 |
74
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 84 |
82 83 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝐴 ∈ ℂ ) |
| 85 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) → 𝑘 ∈ ℕ0 ) |
| 86 |
85
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 87 |
82 86 19
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 88 |
84 87
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 89 |
81 88
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 90 |
72 80 89
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 91 |
73 75 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → 𝐴 ∈ ℂ ) |
| 92 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 93 |
81 87
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 94 |
91 92 93
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 95 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) = ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) |
| 96 |
|
fznn0sub |
⊢ ( 𝑗 ∈ ( 0 ... 𝑚 ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) |
| 97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℕ0 ) |
| 98 |
|
peano2nn0 |
⊢ ( ( 𝑚 − 𝑗 ) ∈ ℕ0 → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) |
| 99 |
97 98
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ) |
| 100 |
99
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℤ ) |
| 101 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝜑 ) |
| 102 |
|
eluznn0 |
⊢ ( ( ( ( 𝑚 − 𝑗 ) + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 103 |
99 102
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 104 |
101 103 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 105 |
101 103 5
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 106 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 107 |
73 4
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 108 |
73 5
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 109 |
107 108
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 110 |
9 99 109
|
iserex |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 111 |
106 110
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → seq ( ( 𝑚 − 𝑗 ) + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 112 |
95 100 104 105 111
|
isumcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ∈ ℂ ) |
| 113 |
9 95 99 107 108 106
|
isumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 114 |
97
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 − 𝑗 ) ∈ ℂ ) |
| 115 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 116 |
|
pncan |
⊢ ( ( ( 𝑚 − 𝑗 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) |
| 117 |
114 115 116
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) = ( 𝑚 − 𝑗 ) ) |
| 118 |
117
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) = ( 0 ... ( 𝑚 − 𝑗 ) ) ) |
| 119 |
118
|
sumeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
| 120 |
82 86 4
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 121 |
120
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) 𝐵 ) |
| 122 |
119 121
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 123 |
122
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ( 0 ... ( ( ( 𝑚 − 𝑗 ) + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 124 |
113 123
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 125 |
93 112 124
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) |
| 126 |
125
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · ( Σ 𝑘 ∈ ℕ0 𝐵 − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 127 |
3 77
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
| 128 |
1
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · 𝐴 ) ) |
| 129 |
127 128
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 130 |
73 75 129
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 131 |
81 91 87
|
fsummulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
| 132 |
130 131
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) − ( 𝐴 · Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) = ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 133 |
94 126 132
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 134 |
133
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 137 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) |
| 138 |
|
ovex |
⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ∈ V |
| 139 |
136 137 138
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 140 |
75 139
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) ) |
| 141 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 142 |
141 9
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 143 |
140 142 80
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) |
| 144 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 145 |
144
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) |
| 146 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) |
| 147 |
146
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 − 𝑗 ) → ( 𝐴 · ( 𝐺 ‘ 𝑛 ) ) = ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 148 |
88
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑗 ∈ ( 0 ... 𝑚 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ) ) → ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 149 |
145 147 148
|
fsum0diag2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 150 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝜑 ) |
| 151 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) |
| 152 |
151
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝑘 ∈ ℕ0 ) |
| 153 |
150 152 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 154 |
150 152 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 155 |
153 142 154
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑚 ) Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
| 156 |
149 155
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) = ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) |
| 157 |
143 156
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑗 ) ) − Σ 𝑗 ∈ ( 0 ... 𝑚 ) Σ 𝑘 ∈ ( 0 ... ( 𝑚 − 𝑗 ) ) ( 𝐴 · ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) |
| 158 |
90 134 157
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) |
| 159 |
158
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) ) |
| 160 |
159
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 161 |
71 160
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 162 |
161
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 163 |
162
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 164 |
163
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝑥 ) ) |
| 166 |
70 165
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 167 |
166
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) − ( seq 0 ( + , 𝐻 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 168 |
1
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) = ( abs ‘ 𝐴 ) ) |
| 169 |
2 168
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 170 |
9 10 169 78 7
|
abscvgcvg |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 171 |
9 10 1 3 170
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ ℕ0 𝐴 ) |
| 172 |
78
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 173 |
|
fveq2 |
⊢ ( 𝑗 = 𝑚 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 174 |
173
|
eleq1d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
| 175 |
174
|
rspccva |
⊢ ( ( ∀ 𝑗 ∈ ℕ0 ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 176 |
172 175
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 177 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 178 |
177
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 179 |
|
ovex |
⊢ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 180 |
178 137 179
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 181 |
180
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
| 182 |
9 10 76 171 176 181
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) ) |
| 183 |
9 10 1 3 170
|
isumcl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 𝐴 ∈ ℂ ) |
| 184 |
76 183
|
mulcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ℕ0 𝐵 · Σ 𝑗 ∈ ℕ0 𝐴 ) = ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
| 185 |
182 184
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( Σ 𝑘 ∈ ℕ0 𝐵 · ( 𝐹 ‘ 𝑛 ) ) ) ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |
| 186 |
9 10 12 33 167 185
|
2clim |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 𝐴 · Σ 𝑘 ∈ ℕ0 𝐵 ) ) |