| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 2 |
|
mertens.2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 3 |
|
mertens.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
mertens.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 5 |
|
mertens.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 6 |
|
mertens.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 7 |
|
mertens.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 8 |
|
mertens.8 |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 9 |
|
mertens.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 10 |
|
mertens.10 |
⊢ 𝑇 = { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } |
| 11 |
|
mertens.11 |
⊢ ( 𝜓 ↔ ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 13 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 14 |
9
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐸 / 2 ) ∈ ℝ+ ) |
| 15 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 16 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 18 |
3
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 19 |
2 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) ∈ ℝ ) |
| 20 |
15 16 17 19 7
|
isumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) ∈ ℝ ) |
| 21 |
3
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 22 |
21 2
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( 𝐾 ‘ 𝑗 ) ) |
| 23 |
15 16 17 19 7 22
|
isumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) ) |
| 24 |
20 23
|
ge0p1rpd |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ∈ ℝ+ ) |
| 25 |
14 24
|
rpdivcld |
⊢ ( 𝜑 → ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ∈ ℝ+ ) |
| 26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 27 |
15 16 4 5 8
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ℕ0 𝐵 ) |
| 28 |
12 13 25 26 27
|
climi2 |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 29 |
|
eluznn |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) → 𝑚 ∈ ℕ ) |
| 30 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 31 |
15 16 30
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℂ ) |
| 32 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
| 33 |
|
ffvelcdm |
⊢ ( ( seq 0 ( + , 𝐺 ) : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℂ ) |
| 34 |
31 32 33
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℂ ) |
| 35 |
15 16 4 5 8
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 ∈ ℂ ) |
| 37 |
34 36
|
abssubd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) = ( abs ‘ ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 38 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) = ( ℤ≥ ‘ ( 𝑚 + 1 ) ) |
| 39 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ0 ) |
| 40 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 42 |
41
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℤ ) |
| 43 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝜑 ) |
| 44 |
|
eluznn0 |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 45 |
41 44
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 46 |
43 45 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 47 |
43 45 5
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 48 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 49 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 50 |
15 41 49
|
iserex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( 𝑚 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 51 |
48 50
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → seq ( 𝑚 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 52 |
38 42 46 47 51
|
isumcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ∈ ℂ ) |
| 53 |
34 52
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) |
| 54 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 55 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 56 |
15 38 41 54 55 48
|
isumsplit |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 57 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 59 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 60 |
|
pncan |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 61 |
58 59 60
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 62 |
61
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
| 63 |
62
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 = Σ 𝑘 ∈ ( 0 ... 𝑚 ) 𝐵 ) |
| 64 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝜑 ) |
| 65 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) |
| 66 |
64 65 4
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 67 |
39 15
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) |
| 68 |
64 65 5
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑚 ) ) → 𝐵 ∈ ℂ ) |
| 69 |
66 67 68
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... 𝑚 ) 𝐵 = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 70 |
63 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 = ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) 𝐵 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 72 |
56 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ℕ0 𝐵 = ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) ) |
| 73 |
72
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = ( ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 74 |
46
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) 𝐵 ) |
| 75 |
53 73 74
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 76 |
75
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( Σ 𝑘 ∈ ℕ0 𝐵 − ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 77 |
37 76
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 78 |
77
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 79 |
29 78
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 80 |
79
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ) → ( ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 81 |
80
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 82 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( ℤ≥ ‘ ( 𝑚 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 83 |
82
|
sumeq1d |
⊢ ( 𝑚 = 𝑛 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 85 |
84
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 86 |
85
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) |
| 87 |
81 86
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) ) |
| 88 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℤ ) |
| 89 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐸 / 2 ) ∈ ℝ+ ) |
| 90 |
11
|
simplbi |
⊢ ( 𝜓 → 𝑠 ∈ ℕ ) |
| 91 |
90
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑠 ∈ ℕ ) |
| 92 |
91
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑠 ∈ ℝ+ ) |
| 93 |
89 92
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐸 / 2 ) / 𝑠 ) ∈ ℝ+ ) |
| 94 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) |
| 95 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) → 𝑛 ∈ ℕ0 ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 97 |
|
peano2nn0 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 98 |
96 97
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 99 |
98
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
| 100 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 101 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝜑 ) |
| 102 |
|
eluznn0 |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 103 |
98 102
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 104 |
101 103 30
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 105 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 106 |
30
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 107 |
15 98 106
|
iserex |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq ( 𝑛 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 108 |
105 107
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → seq ( 𝑛 + 1 ) ( + , 𝐺 ) ∈ dom ⇝ ) |
| 109 |
94 99 100 104 108
|
isumcl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 110 |
109
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 111 |
|
eleq1a |
⊢ ( ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) |
| 112 |
110 111
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) |
| 113 |
112
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) → 𝑧 ∈ ℝ ) ) |
| 114 |
113
|
abssdv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ⊆ ℝ ) |
| 115 |
10 114
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ⊆ ℝ ) |
| 116 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 0 ... ( 𝑠 − 1 ) ) ∈ Fin ) |
| 117 |
|
abrexfi |
⊢ ( ( 0 ... ( 𝑠 − 1 ) ) ∈ Fin → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ∈ Fin ) |
| 118 |
116 117
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) } ∈ Fin ) |
| 119 |
10 118
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ∈ Fin ) |
| 120 |
|
nnm1nn0 |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 − 1 ) ∈ ℕ0 ) |
| 121 |
91 120
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑠 − 1 ) ∈ ℕ0 ) |
| 122 |
121 15
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑠 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 123 |
|
eluzfz1 |
⊢ ( ( 𝑠 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) |
| 124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ) |
| 125 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 126 |
125 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 127 |
126
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 𝐵 ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ 𝐵 ) |
| 129 |
128
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ) |
| 130 |
129
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) |
| 131 |
|
fv0p1e1 |
⊢ ( 𝑛 = 0 → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ( ℤ≥ ‘ 1 ) ) |
| 132 |
131 12
|
eqtr4di |
⊢ ( 𝑛 = 0 → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) = ℕ ) |
| 133 |
132
|
sumeq1d |
⊢ ( 𝑛 = 0 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) |
| 134 |
133
|
fveq2d |
⊢ ( 𝑛 = 0 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) |
| 135 |
134
|
rspceeqv |
⊢ ( ( 0 ∈ ( 0 ... ( 𝑠 − 1 ) ) ∧ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ℕ ( 𝐺 ‘ 𝑘 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 136 |
124 130 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 137 |
|
fvex |
⊢ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ V |
| 138 |
|
eqeq1 |
⊢ ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) → ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 139 |
138
|
rexbidv |
⊢ ( 𝑧 = ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) → ( ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) 𝑧 = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 140 |
137 139 10
|
elab2 |
⊢ ( ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ 𝑇 ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝑠 − 1 ) ) ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 141 |
136 140
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ 𝑇 ) |
| 142 |
141
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑇 ≠ ∅ ) |
| 143 |
|
ltso |
⊢ < Or ℝ |
| 144 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( 𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ ) ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 145 |
143 144
|
mpan |
⊢ ( ( 𝑇 ∈ Fin ∧ 𝑇 ≠ ∅ ∧ 𝑇 ⊆ ℝ ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 146 |
119 142 115 145
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → sup ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
| 147 |
115 146
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → sup ( 𝑇 , ℝ , < ) ∈ ℝ ) |
| 148 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℝ ) |
| 149 |
125 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 150 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 151 |
150
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 152 |
15 151 30
|
iserex |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) ) |
| 153 |
8 152
|
mpbid |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 154 |
12 13 126 149 153
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ 𝐵 ∈ ℂ ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Σ 𝑘 ∈ ℕ 𝐵 ∈ ℂ ) |
| 156 |
155
|
abscld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ∈ ℝ ) |
| 157 |
155
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ) |
| 158 |
|
fimaxre2 |
⊢ ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ∈ Fin ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) |
| 159 |
115 119 158
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) |
| 160 |
115 142 159 141
|
suprubd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( abs ‘ Σ 𝑘 ∈ ℕ 𝐵 ) ≤ sup ( 𝑇 , ℝ , < ) ) |
| 161 |
148 156 147 157 160
|
letrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ sup ( 𝑇 , ℝ , < ) ) |
| 162 |
147 161
|
ge0p1rpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( sup ( 𝑇 , ℝ , < ) + 1 ) ∈ ℝ+ ) |
| 163 |
93 162
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ∈ ℝ+ ) |
| 164 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 165 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) |
| 166 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑚 ) ∈ V |
| 167 |
164 165 166
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 168 |
167
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 169 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 170 |
169
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ∈ V |
| 171 |
170
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ∈ V ) |
| 172 |
|
elnn0uz |
⊢ ( 𝑗 ∈ ℕ0 ↔ 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
| 173 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 174 |
|
fvex |
⊢ ( 𝐾 ‘ 𝑗 ) ∈ V |
| 175 |
173 165 174
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 176 |
175
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 177 |
172 176
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐾 ‘ 𝑗 ) ) |
| 178 |
16 177
|
seqfeq |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ) = seq 0 ( + , 𝐾 ) ) |
| 179 |
178 7
|
eqeltrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 180 |
176 2
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 181 |
180 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 182 |
181
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 183 |
15 16 171 179 182
|
serf0 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ⇝ 0 ) |
| 184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐾 ‘ 𝑛 ) ) ⇝ 0 ) |
| 185 |
15 88 163 168 184
|
climi0 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑡 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 186 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝜑 ) |
| 187 |
|
eluznn0 |
⊢ ( ( 𝑡 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝑚 ∈ ℕ0 ) |
| 188 |
187
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → 𝑚 ∈ ℕ0 ) |
| 189 |
19 22
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ) |
| 190 |
189
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ) |
| 191 |
|
fveq2 |
⊢ ( 𝑗 = 𝑚 → ( 𝐾 ‘ 𝑗 ) = ( 𝐾 ‘ 𝑚 ) ) |
| 192 |
191
|
fveq2d |
⊢ ( 𝑗 = 𝑚 → ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) ) |
| 193 |
192 191
|
eqeq12d |
⊢ ( 𝑗 = 𝑚 → ( ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ↔ ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) ) |
| 194 |
193
|
rspccva |
⊢ ( ( ∀ 𝑗 ∈ ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) ) = ( 𝐾 ‘ 𝑗 ) ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 195 |
190 194
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 196 |
186 188 195
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) = ( 𝐾 ‘ 𝑚 ) ) |
| 197 |
196
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ) → ( ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 198 |
197
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 199 |
164
|
breq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 200 |
199
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) |
| 201 |
198 200
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 202 |
1
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = 𝐴 ) |
| 203 |
2
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝐾 ‘ 𝑗 ) = ( abs ‘ 𝐴 ) ) |
| 204 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 205 |
4
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 206 |
5
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 207 |
6
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( 𝐴 · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 208 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → seq 0 ( + , 𝐾 ) ∈ dom ⇝ ) |
| 209 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 210 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → 𝐸 ∈ ℝ+ ) |
| 211 |
200
|
anbi2i |
⊢ ( ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ↔ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) |
| 212 |
211
|
anbi2i |
⊢ ( ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ↔ ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 213 |
212
|
biimpi |
⊢ ( ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 214 |
213
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 𝜓 ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) ) |
| 215 |
115 142 159
|
3jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) |
| 216 |
161 215
|
jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 0 ≤ sup ( 𝑇 , ℝ , < ) ∧ ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) ) |
| 217 |
216
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ( 0 ≤ sup ( 𝑇 , ℝ , < ) ∧ ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑇 𝑤 ≤ 𝑧 ) ) ) |
| 218 |
202 203 204 205 206 207 208 209 210 10 11 214 217
|
mertenslem1 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑡 ∈ ℕ0 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |
| 219 |
218
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 220 |
201 219
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑡 ∈ ℕ0 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 221 |
220
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑡 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) < ( ( ( 𝐸 / 2 ) / 𝑠 ) / ( sup ( 𝑇 , ℝ , < ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 222 |
185 221
|
mpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |
| 223 |
222
|
ex |
⊢ ( 𝜑 → ( 𝜓 → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 224 |
11 223
|
biimtrrid |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ℕ ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 225 |
224
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝐺 ‘ 𝑘 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 226 |
87 225
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 227 |
226
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 ( + , 𝐺 ) ‘ 𝑚 ) − Σ 𝑘 ∈ ℕ0 𝐵 ) ) < ( ( 𝐸 / 2 ) / ( Σ 𝑗 ∈ ℕ0 ( 𝐾 ‘ 𝑗 ) + 1 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) ) |
| 228 |
28 227
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( 𝐴 · Σ 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝑚 − 𝑗 ) + 1 ) ) 𝐵 ) ) < 𝐸 ) |