| Step | Hyp | Ref | Expression | 
						
							| 1 |  | methaus.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 | 1 | mopnuni | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥  ∈  ∪  𝐽 ) ) | 
						
							| 5 | 4 | biimpar | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  ∪  𝐽 )  →  𝑥  ∈  𝑋 ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  𝑋 ) | 
						
							| 8 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℝ+ ) | 
						
							| 10 | 9 | rpreccld | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | rpxrd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ* ) | 
						
							| 12 | 1 | blopn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  ( 1  /  𝑛 )  ∈  ℝ* )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) )  ∈  𝐽 ) | 
						
							| 13 | 6 7 11 12 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) )  ∈  𝐽 ) | 
						
							| 14 | 13 | fmpttd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) : ℕ ⟶ 𝐽 ) | 
						
							| 15 | 14 | frnd | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ⊆  𝐽 ) | 
						
							| 16 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 17 | 16 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ∈  V | 
						
							| 18 | 17 | rnex | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ∈  V | 
						
							| 19 | 18 | elpw | ⊢ ( ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ∈  𝒫  𝐽  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ⊆  𝐽 ) | 
						
							| 20 | 15 19 | sylibr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ∈  𝒫  𝐽 ) | 
						
							| 21 |  | omelon | ⊢ ω  ∈  On | 
						
							| 22 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 23 | 22 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 24 |  | isnumi | ⊢ ( ( ω  ∈  On  ∧  ω  ≈  ℕ )  →  ℕ  ∈  dom  card ) | 
						
							| 25 | 21 23 24 | mp2an | ⊢ ℕ  ∈  dom  card | 
						
							| 26 |  | ovex | ⊢ ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) )  ∈  V | 
						
							| 27 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) | 
						
							| 28 | 26 27 | fnmpti | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  Fn  ℕ | 
						
							| 29 |  | dffn4 | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  Fn  ℕ  ↔  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) : ℕ –onto→ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ) | 
						
							| 30 | 28 29 | mpbi | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) : ℕ –onto→ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) | 
						
							| 31 |  | fodomnum | ⊢ ( ℕ  ∈  dom  card  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) : ℕ –onto→ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ℕ ) ) | 
						
							| 32 | 25 30 31 | mp2 | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ℕ | 
						
							| 33 |  | domentr | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ℕ  ∧  ℕ  ≈  ω )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω ) | 
						
							| 34 | 32 22 33 | mp2an | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω ) | 
						
							| 36 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 37 |  | simprl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  𝑧  ∈  𝐽 ) | 
						
							| 38 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  𝑥  ∈  𝑧 ) | 
						
							| 39 | 1 | mopni2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 )  →  ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) | 
						
							| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  ∃ 𝑟  ∈  ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) | 
						
							| 41 |  | simp-4l | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 42 |  | simp-4r | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 44 | 43 | nnrpd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 45 | 44 | rpreccld | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 1  /  𝑦 )  ∈  ℝ+ ) | 
						
							| 46 |  | blcntr | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  ( 1  /  𝑦 )  ∈  ℝ+ )  →  𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) | 
						
							| 47 | 41 42 45 46 | syl3anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) | 
						
							| 48 | 45 | rpxrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 1  /  𝑦 )  ∈  ℝ* ) | 
						
							| 49 |  | simplrl | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑟  ∈  ℝ+ ) | 
						
							| 50 | 49 | rpxrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑟  ∈  ℝ* ) | 
						
							| 51 |  | nnrecre | ⊢ ( 𝑦  ∈  ℕ  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 53 | 49 | rpred | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 54 |  | simprr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 1  /  𝑦 )  <  𝑟 ) | 
						
							| 55 | 52 53 54 | ltled | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 1  /  𝑦 )  ≤  𝑟 ) | 
						
							| 56 |  | ssbl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( ( 1  /  𝑦 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ* )  ∧  ( 1  /  𝑦 )  ≤  𝑟 )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 57 | 41 42 48 50 55 56 | syl221anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | 
						
							| 58 |  | simplrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) | 
						
							| 59 | 57 58 | sstrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) | 
						
							| 60 | 47 59 | jca | ⊢ ( ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  ℕ  ∧  ( 1  /  𝑦 )  <  𝑟 ) )  →  ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) | 
						
							| 61 |  | elrp | ⊢ ( 𝑟  ∈  ℝ+  ↔  ( 𝑟  ∈  ℝ  ∧  0  <  𝑟 ) ) | 
						
							| 62 |  | nnrecl | ⊢ ( ( 𝑟  ∈  ℝ  ∧  0  <  𝑟 )  →  ∃ 𝑦  ∈  ℕ ( 1  /  𝑦 )  <  𝑟 ) | 
						
							| 63 | 61 62 | sylbi | ⊢ ( 𝑟  ∈  ℝ+  →  ∃ 𝑦  ∈  ℕ ( 1  /  𝑦 )  <  𝑟 ) | 
						
							| 64 | 63 | ad2antrl | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  →  ∃ 𝑦  ∈  ℕ ( 1  /  𝑦 )  <  𝑟 ) | 
						
							| 65 | 60 64 | reximddv | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  ( 𝑟  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 )  ⊆  𝑧 ) )  →  ∃ 𝑦  ∈  ℕ ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) | 
						
							| 66 | 40 65 | rexlimddv | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  ∃ 𝑦  ∈  ℕ ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) | 
						
							| 67 |  | ovexd | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∈  V ) | 
						
							| 68 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 69 |  | oveq2 | ⊢ ( 𝑛  =  𝑦  →  ( 1  /  𝑛 )  =  ( 1  /  𝑦 ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( 𝑛  =  𝑦  →  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) )  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) | 
						
							| 71 | 70 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  =  ( 𝑦  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) | 
						
							| 72 | 71 | elrnmpt | ⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ↔  ∃ 𝑦  ∈  ℕ 𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) ) | 
						
							| 73 | 68 72 | mp1i | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  ( 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ↔  ∃ 𝑦  ∈  ℕ 𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) ) | 
						
							| 74 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) ) ) | 
						
							| 75 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  →  ( 𝑤  ⊆  𝑧  ↔  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) | 
						
							| 76 | 74 75 | anbi12d | ⊢ ( 𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  →  ( ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  ∧  𝑤  =  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) ) )  →  ( ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) ) | 
						
							| 78 | 67 73 77 | rexxfr2d | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  ( ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ∃ 𝑦  ∈  ℕ ( 𝑥  ∈  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ∧  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑦 ) )  ⊆  𝑧 ) ) ) | 
						
							| 79 | 66 78 | mpbird | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( 𝑧  ∈  𝐽  ∧  𝑥  ∈  𝑧 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) | 
						
							| 80 | 79 | expr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑧  ∈  𝐽 )  →  ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) | 
						
							| 81 | 80 | ralrimiva | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) | 
						
							| 82 |  | breq1 | ⊢ ( 𝑦  =  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ( 𝑦  ≼  ω  ↔  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω ) ) | 
						
							| 83 |  | rexeq | ⊢ ( 𝑦  =  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ( ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) | 
						
							| 84 | 83 | imbi2d | ⊢ ( 𝑦  =  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ( ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) )  ↔  ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 85 | 84 | ralbidv | ⊢ ( 𝑦  =  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ( ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) )  ↔  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 86 | 82 85 | anbi12d | ⊢ ( 𝑦  =  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  →  ( ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ↔  ( ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) ) | 
						
							| 87 | 86 | rspcev | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ∈  𝒫  𝐽  ∧  ( ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) )  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( 𝑥 ( ball ‘ 𝐷 ) ( 1  /  𝑛 ) ) ) ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) )  →  ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 88 | 20 35 81 87 | syl12anc | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 89 | 5 88 | syldan | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  ∪  𝐽 )  →  ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 90 | 89 | ralrimiva | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ∀ 𝑥  ∈  ∪  𝐽 ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 91 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 92 | 91 | is1stc2 | ⊢ ( 𝐽  ∈  1stω  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  𝐽 ∃ 𝑦  ∈  𝒫  𝐽 ( 𝑦  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝑥  ∈  𝑧  →  ∃ 𝑤  ∈  𝑦 ( 𝑥  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) ) | 
						
							| 93 | 2 90 92 | sylanbrc | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  1stω ) |