| Step |
Hyp |
Ref |
Expression |
| 1 |
|
methaus.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 5 |
4
|
biimpar |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝑋 ) |
| 8 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
| 10 |
9
|
rpreccld |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 11 |
10
|
rpxrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ* ) |
| 12 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 13 |
6 7 11 12
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 ) |
| 14 |
13
|
fmpttd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) |
| 15 |
14
|
frnd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ⊆ 𝐽 ) |
| 16 |
|
nnex |
⊢ ℕ ∈ V |
| 17 |
16
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ V |
| 18 |
17
|
rnex |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ V |
| 19 |
18
|
elpw |
⊢ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ↔ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ⊆ 𝐽 ) |
| 20 |
15 19
|
sylibr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ) |
| 21 |
|
omelon |
⊢ ω ∈ On |
| 22 |
|
nnenom |
⊢ ℕ ≈ ω |
| 23 |
22
|
ensymi |
⊢ ω ≈ ℕ |
| 24 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) |
| 25 |
21 23 24
|
mp2an |
⊢ ℕ ∈ dom card |
| 26 |
|
ovex |
⊢ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ V |
| 27 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 28 |
26 27
|
fnmpti |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) Fn ℕ |
| 29 |
|
dffn4 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) Fn ℕ ↔ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) |
| 30 |
28 29
|
mpbi |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) |
| 31 |
|
fodomnum |
⊢ ( ℕ ∈ dom card → ( ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) : ℕ –onto→ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ ) ) |
| 32 |
25 30 31
|
mp2 |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ |
| 33 |
|
domentr |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ℕ ∧ ℕ ≈ ω ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) |
| 34 |
32 22 33
|
mp2an |
⊢ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω |
| 35 |
34
|
a1i |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) |
| 36 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 37 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) |
| 38 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) |
| 39 |
1
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 40 |
36 37 38 39
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 41 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 42 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑥 ∈ 𝑋 ) |
| 43 |
|
simprl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑦 ∈ ℕ ) |
| 44 |
43
|
nnrpd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑦 ∈ ℝ+ ) |
| 45 |
44
|
rpreccld |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ+ ) |
| 46 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 1 / 𝑦 ) ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 47 |
41 42 45 46
|
syl3anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 48 |
45
|
rpxrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ* ) |
| 49 |
|
simplrl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ+ ) |
| 50 |
49
|
rpxrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ* ) |
| 51 |
|
nnrecre |
⊢ ( 𝑦 ∈ ℕ → ( 1 / 𝑦 ) ∈ ℝ ) |
| 52 |
51
|
ad2antrl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 53 |
49
|
rpred |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → 𝑟 ∈ ℝ ) |
| 54 |
|
simprr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) < 𝑟 ) |
| 55 |
52 53 54
|
ltled |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 1 / 𝑦 ) ≤ 𝑟 ) |
| 56 |
|
ssbl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( 1 / 𝑦 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) ∧ ( 1 / 𝑦 ) ≤ 𝑟 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 57 |
41 42 48 50 55 56
|
syl221anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 58 |
|
simplrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 59 |
57 58
|
sstrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) |
| 60 |
47 59
|
jca |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < 𝑟 ) ) → ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 61 |
|
elrp |
⊢ ( 𝑟 ∈ ℝ+ ↔ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) |
| 62 |
|
nnrecl |
⊢ ( ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) |
| 63 |
61 62
|
sylbi |
⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) |
| 64 |
63
|
ad2antrl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < 𝑟 ) |
| 65 |
60 64
|
reximddv |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 66 |
40 65
|
rexlimddv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 67 |
|
ovexd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∈ V ) |
| 68 |
|
vex |
⊢ 𝑤 ∈ V |
| 69 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 1 / 𝑛 ) = ( 1 / 𝑦 ) ) |
| 70 |
69
|
oveq2d |
⊢ ( 𝑛 = 𝑦 → ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 71 |
70
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) = ( 𝑦 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) |
| 72 |
71
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ℕ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) |
| 73 |
68 72
|
mp1i |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ℕ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) |
| 74 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) ) |
| 75 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) |
| 76 |
74 75
|
anbi12d |
⊢ ( 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) ∧ 𝑤 = ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 78 |
67 73 77
|
rexxfr2d |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑦 ∈ ℕ ( 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ∧ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑦 ) ) ⊆ 𝑧 ) ) ) |
| 79 |
66 78
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑥 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 80 |
79
|
expr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 81 |
80
|
ralrimiva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 82 |
|
breq1 |
⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ) ) |
| 83 |
|
rexeq |
⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 84 |
83
|
imbi2d |
⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 85 |
84
|
ralbidv |
⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 86 |
82 85
|
anbi12d |
⊢ ( 𝑦 = ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 87 |
86
|
rspcev |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ∈ 𝒫 𝐽 ∧ ( ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( 𝑥 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 88 |
20 35 81 87
|
syl12anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 89 |
5 88
|
syldan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ∪ 𝐽 ) → ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 90 |
89
|
ralrimiva |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 91 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 92 |
91
|
is1stc2 |
⊢ ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ∪ 𝐽 ∃ 𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 93 |
2 90 92
|
sylanbrc |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |