Metamath Proof Explorer


Theorem met2ndc

Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis methaus.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion met2ndc ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 methaus.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 eqid 𝐽 = 𝐽
3 2 2ndcsep ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝐽 ) )
4 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
5 4 pweqd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 𝐽 )
6 4 eqeq2d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝐽 ) )
7 6 anbi2d ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝐽 ) ) )
8 5 7 rexeqbidv ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝐽 ) ) )
9 3 8 syl5ibr ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) )
10 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
11 1 met2ndci ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥𝑋𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω )
12 11 3exp2 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥𝑋 → ( 𝑥 ≼ ω → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋𝐽 ∈ 2ndω ) ) ) )
13 12 imp4a ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) )
14 10 13 syl5 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) )
15 14 rexlimdv ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) )
16 9 15 impbid ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) )