| Step |
Hyp |
Ref |
Expression |
| 1 |
|
methaus.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 3 |
2
|
2ndcsep |
⊢ ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) |
| 4 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 5 |
4
|
pweqd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 6 |
4
|
eqeq2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) ) |
| 8 |
5 7
|
rexeqbidv |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ↔ ∃ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∪ 𝐽 ) ) ) |
| 9 |
3 8
|
imbitrrid |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 10 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 11 |
1
|
met2ndci |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω ) |
| 12 |
11
|
3exp2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ≼ ω → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 → 𝐽 ∈ 2ndω ) ) ) ) |
| 13 |
12
|
imp4a |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) ) |
| 14 |
10 13
|
syl5 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 𝑋 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) ) |
| 15 |
14
|
rexlimdv |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) → 𝐽 ∈ 2ndω ) ) |
| 16 |
9 15
|
impbid |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |