Metamath Proof Explorer


Theorem met2ndci

Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis methaus.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion met2ndci ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω )

Proof

Step Hyp Ref Expression
1 methaus.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 2 adantr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ Top )
4 simpll ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
5 simplr1 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝐴𝑋 )
6 simprr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝑦𝐴 )
7 5 6 sseldd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝑦𝑋 )
8 simprl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝑥 ∈ ℕ )
9 8 nnrpd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → 𝑥 ∈ ℝ+ )
10 9 rpreccld ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → ( 1 / 𝑥 ) ∈ ℝ+ )
11 10 rpxrd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → ( 1 / 𝑥 ) ∈ ℝ* )
12 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦𝑋 ∧ ( 1 / 𝑥 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 )
13 4 7 11 12 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦𝐴 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 )
14 13 ralrimivva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ∀ 𝑥 ∈ ℕ ∀ 𝑦𝐴 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 )
15 eqid ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) = ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) )
16 15 fmpo ( ∀ 𝑥 ∈ ℕ ∀ 𝑦𝐴 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ∈ 𝐽 ↔ ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) ⟶ 𝐽 )
17 14 16 sylib ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) ⟶ 𝐽 )
18 17 frnd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ⊆ 𝐽 )
19 simpll ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
20 simprl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) → 𝑢𝐽 )
21 simprr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) → 𝑧𝑢 )
22 1 mopni2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢𝐽𝑧𝑢 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 )
23 19 20 21 22 syl3anc ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 )
24 simprl ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → 𝑟 ∈ ℝ+ )
25 24 rphalfcld ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
26 elrp ( ( 𝑟 / 2 ) ∈ ℝ+ ↔ ( ( 𝑟 / 2 ) ∈ ℝ ∧ 0 < ( 𝑟 / 2 ) ) )
27 nnrecl ( ( ( 𝑟 / 2 ) ∈ ℝ ∧ 0 < ( 𝑟 / 2 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) )
28 26 27 sylbi ( ( 𝑟 / 2 ) ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) )
29 25 28 syl ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) )
30 3 ad2antrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐽 ∈ Top )
31 simpr1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴𝑋 )
32 31 ad2antrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐴𝑋 )
33 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
34 33 ad3antrrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑋 = 𝐽 )
35 32 34 sseqtrd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐴 𝐽 )
36 simplrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧𝑢 )
37 simplrl ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑢𝐽 )
38 elunii ( ( 𝑧𝑢𝑢𝐽 ) → 𝑧 𝐽 )
39 36 37 38 syl2anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 𝐽 )
40 39 34 eleqtrrd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧𝑋 )
41 simpr3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 )
42 41 ad2antrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 )
43 40 42 eleqtrrd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )
44 19 adantr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
45 simprrl ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑛 ∈ ℕ )
46 45 nnrpd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑛 ∈ ℝ+ )
47 46 rpreccld ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ+ )
48 47 rpxrd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ* )
49 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ* ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 )
50 44 40 48 49 syl3anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽 )
51 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧𝑋 ∧ ( 1 / 𝑛 ) ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
52 44 40 47 51 syl3anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
53 eqid 𝐽 = 𝐽
54 53 clsndisj ( ( ( 𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ 𝐽𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) ) → ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ )
55 30 35 43 50 52 54 syl32anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ )
56 n0 ( ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) )
57 55 56 sylib ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ∃ 𝑡 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) )
58 45 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑛 ∈ ℕ )
59 simpr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) )
60 59 elin2d ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡𝐴 )
61 eqidd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
62 oveq2 ( 𝑥 = 𝑛 → ( 1 / 𝑥 ) = ( 1 / 𝑛 ) )
63 62 oveq2d ( 𝑥 = 𝑛 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
64 63 eqeq2d ( 𝑥 = 𝑛 → ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) )
65 oveq1 ( 𝑦 = 𝑡 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
66 65 eqeq2d ( 𝑦 = 𝑡 → ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) )
67 64 66 rspc2ev ( ( 𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) )
68 58 60 61 67 syl3anc ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) )
69 ovex ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ V
70 eqeq1 ( 𝑧 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) )
71 70 2rexbidv ( 𝑧 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) )
72 15 rnmpo ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 𝑧 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) }
73 69 71 72 elab2 ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦𝐴 ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) )
74 68 73 sylibr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) )
75 59 elin1d ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
76 44 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
77 48 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 1 / 𝑛 ) ∈ ℝ* )
78 40 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧𝑋 )
79 32 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝐴𝑋 )
80 79 60 sseldd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑡𝑋 )
81 blcom ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1 / 𝑛 ) ∈ ℝ* ) ∧ ( 𝑧𝑋𝑡𝑋 ) ) → ( 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) )
82 76 77 78 80 81 syl22anc ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ∈ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ↔ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) )
83 75 82 mpbid ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) )
84 simprll ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → 𝑟 ∈ ℝ+ )
85 84 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑟 ∈ ℝ+ )
86 85 rphalfcld ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
87 86 rpxrd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑟 / 2 ) ∈ ℝ* )
88 simprrr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) < ( 𝑟 / 2 ) )
89 84 rphalfcld ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
90 rpre ( ( 1 / 𝑛 ) ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ )
91 rpre ( ( 𝑟 / 2 ) ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ )
92 ltle ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) )
93 90 91 92 syl2an ( ( ( 1 / 𝑛 ) ∈ ℝ+ ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) )
94 47 89 93 syl2anc ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( ( 1 / 𝑛 ) < ( 𝑟 / 2 ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) )
95 88 94 mpd ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) )
96 95 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) )
97 ssbl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ ( ( 1 / 𝑛 ) ∈ ℝ* ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 1 / 𝑛 ) ≤ ( 𝑟 / 2 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
98 76 80 77 87 96 97 syl221anc ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
99 85 rpred ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑟 ∈ ℝ )
100 98 83 sseldd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
101 blhalf ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑡𝑋 ) ∧ ( 𝑟 ∈ ℝ ∧ 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
102 76 80 99 100 101 syl22anc ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
103 simprlr ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 )
104 103 adantr ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 )
105 102 104 sstrd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ 𝑢 )
106 98 105 sstrd ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 )
107 eleq2 ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑧𝑤𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ) )
108 sseq1 ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( 𝑤𝑢 ↔ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) )
109 107 108 anbi12d ( 𝑤 = ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) → ( ( 𝑧𝑤𝑤𝑢 ) ↔ ( 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) ) )
110 109 rspcev ( ( ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∧ ( 𝑧 ∈ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∧ ( 𝑡 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
111 74 83 106 110 syl12anc ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) ∧ 𝑡 ∈ ( ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / 𝑛 ) ) ∩ 𝐴 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
112 57 111 exlimddv ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
113 112 anassrs ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) ∧ ( 𝑛 ∈ ℕ ∧ ( 1 / 𝑛 ) < ( 𝑟 / 2 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
114 29 113 rexlimddv ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
115 23 114 rexlimddv ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) ∧ ( 𝑢𝐽𝑧𝑢 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
116 115 ralrimivva ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ∀ 𝑢𝐽𝑧𝑢𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) )
117 basgen2 ( ( 𝐽 ∈ Top ∧ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ⊆ 𝐽 ∧ ∀ 𝑢𝐽𝑧𝑢𝑤 ∈ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ( 𝑧𝑤𝑤𝑢 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) = 𝐽 )
118 3 18 116 117 syl3anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) = 𝐽 )
119 118 3 eqeltrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ Top )
120 tgclb ( ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ Top )
121 119 120 sylibr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases )
122 omelon ω ∈ On
123 simpr2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐴 ≼ ω )
124 nnex ℕ ∈ V
125 124 xpdom2 ( 𝐴 ≼ ω → ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) )
126 123 125 syl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) )
127 nnenom ℕ ≈ ω
128 omex ω ∈ V
129 128 enref ω ≈ ω
130 xpen ( ( ℕ ≈ ω ∧ ω ≈ ω ) → ( ℕ × ω ) ≈ ( ω × ω ) )
131 127 129 130 mp2an ( ℕ × ω ) ≈ ( ω × ω )
132 xpomen ( ω × ω ) ≈ ω
133 131 132 entri ( ℕ × ω ) ≈ ω
134 domentr ( ( ( ℕ × 𝐴 ) ≼ ( ℕ × ω ) ∧ ( ℕ × ω ) ≈ ω ) → ( ℕ × 𝐴 ) ≼ ω )
135 126 133 134 sylancl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ≼ ω )
136 ondomen ( ( ω ∈ On ∧ ( ℕ × 𝐴 ) ≼ ω ) → ( ℕ × 𝐴 ) ∈ dom card )
137 122 135 136 sylancr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( ℕ × 𝐴 ) ∈ dom card )
138 17 ffnd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) Fn ( ℕ × 𝐴 ) )
139 dffn4 ( ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) Fn ( ℕ × 𝐴 ) ↔ ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) )
140 138 139 sylib ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) )
141 fodomnum ( ( ℕ × 𝐴 ) ∈ dom card → ( ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) : ( ℕ × 𝐴 ) –onto→ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) ) )
142 137 140 141 sylc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) )
143 domtr ( ( ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ( ℕ × 𝐴 ) ∧ ( ℕ × 𝐴 ) ≼ ω ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω )
144 142 135 143 syl2anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω )
145 2ndci ( ( ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ 2ndω )
146 121 144 145 syl2anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → ( topGen ‘ ran ( 𝑥 ∈ ℕ , 𝑦𝐴 ↦ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / 𝑥 ) ) ) ) ∈ 2ndω )
147 118 146 eqeltrrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐴 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) ) → 𝐽 ∈ 2ndω )