| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metcld.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
1
|
metcld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) ) |
| 3 |
|
19.23v |
⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
4
|
elima2 |
⊢ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 6 |
|
id |
⊢ ( 𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋 ) |
| 7 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
| 8 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ dom ∞Met ) → 𝑆 ∈ V ) |
| 9 |
6 7 8
|
syl2anr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 10 |
|
nnex |
⊢ ℕ ∈ V |
| 11 |
|
elmapg |
⊢ ( ( 𝑆 ∈ V ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 13 |
12
|
anbi1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 14 |
13
|
exbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 15 |
5 14
|
bitr2id |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ) ) |
| 16 |
15
|
imbi1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 17 |
3 16
|
bitrid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 18 |
17
|
albidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 19 |
|
df-ss |
⊢ ( ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) |
| 20 |
18 19
|
bitr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ) ) |
| 21 |
2 20
|
bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ) ) |