Step |
Hyp |
Ref |
Expression |
1 |
|
metcnp4.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metcnp4.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
|
metcnp4.5 |
⊢ ( 𝜑 → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
|
metcnp4.6 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
5 |
|
metcn4.7 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
6 |
1
|
met1stc |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ 1stω ) |
8 |
1
|
mopntopon |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
10 |
2
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
12 |
7 9 11 5
|
1stccn |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |