| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcn.2 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 2 |  | metcn.4 | ⊢ 𝐾  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 3 | 1 2 | metcnp3 | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) | 
						
							| 4 |  | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  Fun  𝐹 ) | 
						
							| 5 | 4 | ad2antlr | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  Fun  𝐹 ) | 
						
							| 6 |  | simpll1 | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  𝐶  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 |  | simpll3 | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 8 |  | rpxr | ⊢ ( 𝑧  ∈  ℝ+  →  𝑧  ∈  ℝ* ) | 
						
							| 9 | 8 | ad2antll | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  𝑧  ∈  ℝ* ) | 
						
							| 10 |  | blssm | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑧  ∈  ℝ* )  →  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ⊆  𝑋 ) | 
						
							| 11 | 6 7 9 10 | syl3anc | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ⊆  𝑋 ) | 
						
							| 12 |  | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  dom  𝐹  =  𝑋 ) | 
						
							| 13 | 12 | ad2antlr | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  dom  𝐹  =  𝑋 ) | 
						
							| 14 | 11 13 | sseqtrrd | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ⊆  dom  𝐹 ) | 
						
							| 15 |  | funimass4 | ⊢ ( ( Fun  𝐹  ∧  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 16 | 5 14 15 | syl2anc | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 17 |  | elbl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑧  ∈  ℝ* )  →  ( 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ↔  ( 𝑤  ∈  𝑋  ∧  ( 𝑃 𝐶 𝑤 )  <  𝑧 ) ) ) | 
						
							| 18 | 6 7 9 17 | syl3anc | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  ↔  ( 𝑤  ∈  𝑋  ∧  ( 𝑃 𝐶 𝑤 )  <  𝑧 ) ) ) | 
						
							| 19 | 18 | imbi1d | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( ( 𝑤  ∈  𝑋  ∧  ( 𝑃 𝐶 𝑤 )  <  𝑧 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) | 
						
							| 20 |  | impexp | ⊢ ( ( ( 𝑤  ∈  𝑋  ∧  ( 𝑃 𝐶 𝑤 )  <  𝑧 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( 𝑤  ∈  𝑋  →  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) | 
						
							| 21 |  | simpl2 | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  𝐷  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 23 |  | simplrl | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  𝑦  ∈  ℝ+ ) | 
						
							| 24 | 23 | rpxrd | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  𝑦  ∈  ℝ* ) | 
						
							| 25 |  | simpllr | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 26 | 7 | adantr | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  𝑃  ∈  𝑋 ) | 
						
							| 27 | 25 26 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝑌 ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝑌 ) | 
						
							| 30 |  | elbl2 | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑦  ∈  ℝ* )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  𝑌  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) | 
						
							| 31 | 22 24 27 29 30 | syl22anc | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  ∧  𝑤  ∈  𝑋 )  →  ( ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 33 | 32 | pm5.74da | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( 𝑤  ∈  𝑋  →  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) )  ↔  ( 𝑤  ∈  𝑋  →  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) | 
						
							| 34 | 20 33 | bitrid | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( ( 𝑤  ∈  𝑋  ∧  ( 𝑃 𝐶 𝑤 )  <  𝑧 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( 𝑤  ∈  𝑋  →  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) | 
						
							| 35 | 19 34 | bitrd | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( 𝑤  ∈  𝑋  →  ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) | 
						
							| 36 | 35 | ralbidv2 | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ∀ 𝑤  ∈  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 )  ∈  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 37 | 16 36 | bitrd | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑦  ∈  ℝ+  ∧  𝑧  ∈  ℝ+ ) )  →  ( ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 38 | 37 | anassrs | ⊢ ( ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑦  ∈  ℝ+ )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 39 | 38 | rexbidva | ⊢ ( ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  𝑦  ∈  ℝ+ )  →  ( ∃ 𝑧  ∈  ℝ+ ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 40 | 39 | ralbidva | ⊢ ( ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 )  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) | 
						
							| 41 | 40 | pm5.32da | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  →  ( ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ( 𝐹  “  ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) )  ⊆  ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) | 
						
							| 42 | 3 41 | bitrd | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐷  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈  𝑋 ( ( 𝑃 𝐶 𝑤 )  <  𝑧  →  ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑦 ) ) ) ) |