Step |
Hyp |
Ref |
Expression |
1 |
|
metcn.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metcn.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
1 2
|
metcnp3 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
4 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
5 |
4
|
ad2antlr |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → Fun 𝐹 ) |
6 |
|
simpll1 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
|
simpll3 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑃 ∈ 𝑋 ) |
8 |
|
rpxr |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) |
9 |
8
|
ad2antll |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ* ) |
10 |
|
blssm |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑋 ) |
11 |
6 7 9 10
|
syl3anc |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑋 ) |
12 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → dom 𝐹 = 𝑋 ) |
14 |
11 13
|
sseqtrrd |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ dom 𝐹 ) |
15 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
16 |
5 14 15
|
syl2anc |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
17 |
|
elbl |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) ) ) |
18 |
6 7 9 17
|
syl3anc |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) ) ) |
19 |
18
|
imbi1d |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
20 |
|
impexp |
⊢ ( ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
23 |
|
simplrl |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑦 ∈ ℝ+ ) |
24 |
23
|
rpxrd |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑦 ∈ ℝ* ) |
25 |
|
simpllr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
26 |
7
|
adantr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
27 |
25 26
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
28 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
29 |
28
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) |
30 |
|
elbl2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑦 ∈ ℝ* ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) |
31 |
22 24 27 29 30
|
syl22anc |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) |
32 |
31
|
imbi2d |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
33 |
32
|
pm5.74da |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
34 |
20 33
|
syl5bb |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
35 |
19 34
|
bitrd |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
36 |
35
|
ralbidv2 |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
37 |
16 36
|
bitrd |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
38 |
37
|
anassrs |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
39 |
38
|
rexbidva |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
40 |
39
|
ralbidva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
41 |
40
|
pm5.32da |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
42 |
3 41
|
bitrd |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |