Step |
Hyp |
Ref |
Expression |
1 |
|
metcn.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metcn.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
1 2
|
metcnp |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝑃 ∈ 𝑋 ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
8 |
|
simpr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
9 |
|
xmetsym |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑤 ) = ( 𝑤 𝐶 𝑃 ) ) |
10 |
5 7 8 9
|
syl3anc |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑃 𝐶 𝑤 ) = ( 𝑤 𝐶 𝑃 ) ) |
11 |
10
|
breq1d |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 ↔ ( 𝑤 𝐶 𝑃 ) < 𝑧 ) ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
14 |
|
simpllr |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
15 |
14 7
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
16 |
14 8
|
ffvelrnd |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) |
17 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ) |
18 |
13 15 16 17
|
syl3anc |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) ) |
19 |
18
|
breq1d |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) |
20 |
11 19
|
imbi12d |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
21 |
20
|
ralbidva |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
22 |
21
|
anassrs |
⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ) → ( ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
23 |
22
|
rexbidva |
⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
24 |
23
|
ralbidva |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) |
25 |
24
|
pm5.32da |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) ) |
26 |
3 25
|
bitrd |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑤 𝐶 𝑃 ) < 𝑧 → ( ( 𝐹 ‘ 𝑤 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑦 ) ) ) ) |