Metamath Proof Explorer


Theorem metcnp4

Description: Two ways to say a mapping from metric C to metric D is continuous at point P . Theorem 14-4.3 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 4-May-2014)

Ref Expression
Hypotheses metcnp4.3 𝐽 = ( MetOpen ‘ 𝐶 )
metcnp4.4 𝐾 = ( MetOpen ‘ 𝐷 )
metcnp4.5 ( 𝜑𝐶 ∈ ( ∞Met ‘ 𝑋 ) )
metcnp4.6 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑌 ) )
metcnp4.7 ( 𝜑𝑃𝑋 )
Assertion metcnp4 ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) → ( 𝐹𝑓 ) ( ⇝𝑡𝐾 ) ( 𝐹𝑃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 metcnp4.3 𝐽 = ( MetOpen ‘ 𝐶 )
2 metcnp4.4 𝐾 = ( MetOpen ‘ 𝐷 )
3 metcnp4.5 ( 𝜑𝐶 ∈ ( ∞Met ‘ 𝑋 ) )
4 metcnp4.6 ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑌 ) )
5 metcnp4.7 ( 𝜑𝑃𝑋 )
6 1 met1stc ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ 1stω )
7 3 6 syl ( 𝜑𝐽 ∈ 1stω )
8 1 mopntopon ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
9 3 8 syl ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
10 2 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) )
11 4 10 syl ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
12 7 9 11 5 1stccnp ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) → ( 𝐹𝑓 ) ( ⇝𝑡𝐾 ) ( 𝐹𝑃 ) ) ) ) )