Step |
Hyp |
Ref |
Expression |
1 |
|
metcn.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) |
2 |
|
metcn.4 |
⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) |
3 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
5 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
6
|
cnprcl |
⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
9 |
1
|
mopnuni |
⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑋 = ∪ 𝐽 ) |
11 |
8 10
|
eleqtrrd |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 ∈ 𝑋 ) |
12 |
1 2
|
metcnp2 |
⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) ) |
13 |
4 5 11 12
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) ) |
14 |
3 13
|
mpbid |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ↔ ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ↔ ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
17 |
16
|
rexralbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) ↔ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
18 |
17
|
rspccv |
⊢ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝑧 ) → ( 𝐴 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
19 |
14 18
|
simpl2im |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐴 ∈ ℝ+ → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) ) |
20 |
19
|
impr |
⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐴 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐶 𝑃 ) < 𝑥 → ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑃 ) ) < 𝐴 ) ) |