| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmetdcn2.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | xmetdcn2.2 | ⊢ 𝐶  =  ( dist ‘ ℝ*𝑠 ) | 
						
							| 3 |  | xmetdcn2.3 | ⊢ 𝐾  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 4 |  | metdcn.d | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 5 |  | metdcn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 6 |  | metdcn.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑋 ) | 
						
							| 7 |  | metdcn.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 8 |  | metdcn.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑋 ) | 
						
							| 9 |  | metdcn.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑋 ) | 
						
							| 10 |  | metdcn.4 | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑌 )  <  ( 𝑅  /  2 ) ) | 
						
							| 11 |  | metdcn.5 | ⊢ ( 𝜑  →  ( 𝐵 𝐷 𝑍 )  <  ( 𝑅  /  2 ) ) | 
						
							| 12 | 2 | xrsxmet | ⊢ 𝐶  ∈  ( ∞Met ‘ ℝ* ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  𝐶  ∈  ( ∞Met ‘ ℝ* ) ) | 
						
							| 14 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 15 | 4 5 6 14 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 16 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ∈  𝑋  ∧  𝑍  ∈  𝑋 )  →  ( 𝑌 𝐷 𝑍 )  ∈  ℝ* ) | 
						
							| 17 | 4 8 9 16 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 𝐷 𝑍 )  ∈  ℝ* ) | 
						
							| 18 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑌 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 19 | 4 8 6 18 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 𝐷 𝐵 )  ∈  ℝ* ) | 
						
							| 20 | 7 | rphalfcld | ⊢ ( 𝜑  →  ( 𝑅  /  2 )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpred | ⊢ ( 𝜑  →  ( 𝑅  /  2 )  ∈  ℝ ) | 
						
							| 22 |  | xmetcl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝐵 )  ∈  ℝ* )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ∈  ℝ* ) | 
						
							| 23 | 13 15 19 22 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ∈  ℝ* ) | 
						
							| 24 | 20 | rpxrd | ⊢ ( 𝜑  →  ( 𝑅  /  2 )  ∈  ℝ* ) | 
						
							| 25 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋 )  →  ( 𝐴 𝐷 𝑌 )  ∈  ℝ* ) | 
						
							| 26 | 4 5 8 25 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝐷 𝑌 )  ∈  ℝ* ) | 
						
							| 27 | 2 | xmetrtri2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝑌  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ≤  ( 𝐴 𝐷 𝑌 ) ) | 
						
							| 28 | 4 5 8 6 27 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ≤  ( 𝐴 𝐷 𝑌 ) ) | 
						
							| 29 | 23 26 24 28 10 | xrlelttrd | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  <  ( 𝑅  /  2 ) ) | 
						
							| 30 | 23 24 29 | xrltled | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ≤  ( 𝑅  /  2 ) ) | 
						
							| 31 |  | xmetlecl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝐵 )  ∈  ℝ* )  ∧  ( ( 𝑅  /  2 )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ≤  ( 𝑅  /  2 ) ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ∈  ℝ ) | 
						
							| 32 | 13 15 19 21 30 31 | syl122anc | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  ∈  ℝ ) | 
						
							| 33 |  | xmetcl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( 𝑌 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝑍 )  ∈  ℝ* )  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ* ) | 
						
							| 34 | 13 19 17 33 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ* ) | 
						
							| 35 |  | xmetcl | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  𝑋  ∧  𝑍  ∈  𝑋 )  →  ( 𝐵 𝐷 𝑍 )  ∈  ℝ* ) | 
						
							| 36 | 4 6 9 35 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵 𝐷 𝑍 )  ∈  ℝ* ) | 
						
							| 37 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑌 𝐷 𝐵 )  =  ( 𝐵 𝐷 𝑌 ) ) | 
						
							| 38 | 4 8 6 37 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 𝐷 𝐵 )  =  ( 𝐵 𝐷 𝑌 ) ) | 
						
							| 39 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑌  ∈  𝑋  ∧  𝑍  ∈  𝑋 )  →  ( 𝑌 𝐷 𝑍 )  =  ( 𝑍 𝐷 𝑌 ) ) | 
						
							| 40 | 4 8 9 39 | syl3anc | ⊢ ( 𝜑  →  ( 𝑌 𝐷 𝑍 )  =  ( 𝑍 𝐷 𝑌 ) ) | 
						
							| 41 | 38 40 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  =  ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) ) ) | 
						
							| 42 | 2 | xmetrtri2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  𝑌  ∈  𝑋 ) )  →  ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) )  ≤  ( 𝐵 𝐷 𝑍 ) ) | 
						
							| 43 | 4 6 9 8 42 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐵 𝐷 𝑌 ) 𝐶 ( 𝑍 𝐷 𝑌 ) )  ≤  ( 𝐵 𝐷 𝑍 ) ) | 
						
							| 44 | 41 43 | eqbrtrd | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( 𝐵 𝐷 𝑍 ) ) | 
						
							| 45 | 34 36 24 44 11 | xrlelttrd | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  <  ( 𝑅  /  2 ) ) | 
						
							| 46 | 34 24 45 | xrltled | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( 𝑅  /  2 ) ) | 
						
							| 47 |  | xmetlecl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( ( 𝑌 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝑍 )  ∈  ℝ* )  ∧  ( ( 𝑅  /  2 )  ∈  ℝ  ∧  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( 𝑅  /  2 ) ) )  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ ) | 
						
							| 48 | 13 19 17 21 46 47 | syl122anc | ⊢ ( 𝜑  →  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ ) | 
						
							| 49 | 32 48 | readdcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 50 |  | xmettri | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝑍 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝐵 )  ∈  ℝ* ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +𝑒  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) | 
						
							| 51 | 13 15 17 19 50 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +𝑒  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) | 
						
							| 52 | 32 48 | rexaddd | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +𝑒  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) )  =  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) | 
						
							| 53 | 51 52 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) | 
						
							| 54 |  | xmetlecl | ⊢ ( ( 𝐶  ∈  ( ∞Met ‘ ℝ* )  ∧  ( ( 𝐴 𝐷 𝐵 )  ∈  ℝ*  ∧  ( 𝑌 𝐷 𝑍 )  ∈  ℝ* )  ∧  ( ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) )  ∈  ℝ  ∧  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ≤  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) ) ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ ) | 
						
							| 55 | 13 15 17 49 53 54 | syl122anc | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  ∈  ℝ ) | 
						
							| 56 | 7 | rpred | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 57 | 32 48 56 29 45 | lt2halvesd | ⊢ ( 𝜑  →  ( ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝐵 ) )  +  ( ( 𝑌 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) ) )  <  𝑅 ) | 
						
							| 58 | 55 49 56 53 57 | lelttrd | ⊢ ( 𝜑  →  ( ( 𝐴 𝐷 𝐵 ) 𝐶 ( 𝑌 𝐷 𝑍 ) )  <  𝑅 ) |